


niEFAi^E.

in ir» i% *4 , aff4% ib-*

riiiHir? *jf il:k^-s a aM^b.#! of 4i€*:n'Ut fV*>fti ili^i

g'l;-Ih''fll!lv t'‘IllpL It a mftSiM
hmhmrmul a^-!iiiipti..«, muwly, ihu tli*^ i4 ^
ain.»„ as lht,-*jr rin>ti*w, ii 4mt
milOtl^r. ils a H*;. iii^^: l^v

i*f that ifi<lr|i*.‘ri<h'iit>.% the law of fii«irilMiti*-*ii ^4 in.* fiii* tita

tht* »"i|ni!ii-ritni! thrill Ait#!., fir *ym-vftm

tnmsiatiofi

Q » 2 n’t-

1

»# a -f- a- 'fcr^i,

iM lit^rig iiiiil f, w FriMti tliis

ifitiepfeiiideiiCi? an*} fo>ni ifii« f.rtii «>f Q B^AiMimauM

themmi% imniAj the H m^i tim% ^ i thtr

of mean kioetie m^crgj for *cmh degree* *>f

1 profK*^e to gifr to Q the more ge«er^ Itoi of a

I iifi€tion, iMFiif* ly

y = i/ll I -y p* ^^ I iii I mu' -f- «p' 4* i

Her i* 4 nt gative trf the fiktAim^ r at the iri^taal

mmddeTmi ^twevu the twd imileetilee wfa>:^.* ap,*

14 efer, wliieli iumtim m iaappreciahfe €X«>f4 ¥rfj’ ^imE

¥ allies ,4 e. I **}iall e»lmroiir m jmwe ii* C^'i^ers I?., V,

tial the i the mnlm he

Il las bN?n firofal ahiimiaritly tlial, mmmi^ ik$-

the uh^lfH M with the hmh ol I

ike mi m, n 4 ike

Thr a*.r «if Mttnhntmg ttj tj ima

1% %hm% laiEeeiilai a»r t# emk oth^ l»ft i« s^ersi^/ m tuif%em



VI IMIEFAOE.

in the same direction. They tend to form HtroaniH. That

result, if it can bo established, is worth investigation.

For ordinary gases under ordinary conditions the h cO”

efficients are probably very small, and their effect negligible

in such investigations as those of Tait and Boltzmann (um-

cerniiig diffusion, viscosity, etc. But I think that tlu^ law

in its altered form will express the state of the system

without restriction as to density, except as follows. A physical

limit there must be, when the gas li(juefieB under pressure,

if not before. For it will not be contended that the dis-

tribution of momenta among the molecides of the li(iU(di(Hl

gas is represented by the same exponential form as in tlui

gaseous condition. An analytical limit there is, wluui Q in

its altered form ceases to bo necessarily positive, that is when

the determinant of the coefficients ceases to be positive. It

can bo shown that this determinant does (liminish as density

increases, or temperature diminishes. But I have not cal-

culated its value. It is therefore no more than a conjecture,

though perhaps a plausible conjecture, that the vanishing of

the determinant may coincide with the physical changt^ in

the substance.

It appears to mo that the law of ecpiality of mean kinetic

energy for each degree of freedom cannot be reconciled with

my proposed form of that in fact the law holds only for

the limiting case of a very rare gas.

It is no light thing to question a conclusion maintained

by Boltzmann, if indeed he does maintain this concluHion for

all substances, or for all gases irrespective of density. I can

but state the objections to this theorem, and to a certain aspect

of the II theorem, as they appear to me. The readcu’ will

judge what weight is to be attributed to them.

S. H. BUEBURY.
10 May^ 1899 .
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CHAPTEE i

OITTOME or THE THIOET,

1* A OiJ M€€pt4mg to the Emctir Tfe:«y cil

giml aiimber of ia imp«l Ami tEo obJtK't, ol*

the lli€*^>ry m to t^iplaiis on tiii^ cx-ititis of lit?

piijiical propertiet of gasem.

An? f|iiaiitity of ga^ wEkh can W itohl'ed fcir the p!ir|K#%?

of ezfenmmU in to be m m nnsilitiT

of iiiol€Ciile« pfm?tically mMmU. 1% k not p:«iWe t-'> eotstrol

**f to ohmr^'^ tfce motmns of iiidiTidiial Biit the

thetffv mmmm tbat mith motion u subjeet to the

djTiami^ laws. Ah»j thsl if tfce m an a^grtgmto of

molmmlm, he ml rest, no dissipation of takes place.

2. A Eitiieeiik inaj ^mskt of one or more tbmii one atom

B^mimg to the cfcemial ol the siihstanoe to

which il k?k®gs. It may be t-^t hcimfter we ’^hali 1:^? able to

ex'pMa m dymiaiml pisci|^^ the chemiml rr-lations *'»f

» 0011*11tiieiit fAftM of a molwil-e, and of mter .§f.

Am4 mmm ppc^gr^ hm b^n made in this direvtiori. At

the thecity is rM>t with cheiBicai p#ro»

bill with those oi ga#eii which ma? change-

withiMi tty c^rigt taking ia the ehemM^ai

tht, gm: im mimnce, ^mty, pr^nre, and tompermtmre.

And ^ liepndiBg on l^e Imttor, it ^ with the

fiufeBoineiM of Yi^^ity, ditfasMw., a^dmciicm cif fccmt or

ekt^liKity..

I



S- A m^4e€i%y tiiMvtfji^ m and iridi visible, kM
of fre€«^:»fn in fmfect of it^ iiiytioii of Iran elation

m #'p»i'v. Aiid it mMf ctm€tdfSkb!v iiMve tkFk%^ otbvr degrtris of

ifwdm UMm^lj, m&thm of ftitalniii ^h>mx its priiiei|»l aies»

In r^p^t oi its iateftiid constitution it maj have liiaaj degrees

of but wa know nothing of the intoniai coast itntion

ri# what ehemiiti tell iif.

impair^ itJ phjsicml propertii^, for instance, its prepare and

temprrttafe, and its eheiiiiea! mmtitutim. If therefore

th€«e properties mt ehafipng, and are to be explained

os dfnaiaiad principles m n^nltiug fmmi the iiiotion of the

mol/ecnlai, such motion iimst bt? rmiim.

ur HOM*''«EXErrf.

S. The gas, or system of molecfiles, ma? be in a certain

a tiaite hmogmmu^^ For instance, a cubic centi-

metre %d air }ia*» feasibly the mme pr*,)peities in all respects

wheth^ taken firom one |Mit of a horiioatal table or from
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S. MiMfem plijmickt# h*mmm m tliat

finiie m that thei^ m % isile ih^tmicr, fe»>w-

t%\'r siuall, m-iiliiB whic^ twa oi-oieciik^ imim'jt. €a*:ii

otli€f btfiag the mm., the hQm^fgmmty mu he ft^'^J

obIj m tie ftillowiiig form,- If we cm^iiler s iimutity eJ gsi*

withia a §pliere of mdim r de^i^nliied about P m e^cirt^

and » qiiMitilj witbin mn e*^\ml sphere de^riWI '£h*nt ii m
eeatre, titlitr sphere aimtaiaiag a niiiBber t#f pr#ti-

mllj iniiiite, then r bring withiii aertain hmiu th^ lif^t

qamiititj has the mine physical piroperties m the

m THE Bmmn or a gam.

f. The same doctrine «>f the finite sire of nioltciiles ra'iisi;»s

ec»ridemb!e difficnity in defining certain mher |irvi|M‘rties *if

tIc" system, for instance the dmdiy.

The density of the gas m nsimliy liefiaeii t<> he the inin of

thc^ of all the mmlmmlm in unit of votunie. But if the

fiiolmilet have finite diiii€^sriofis, that may iimke the d€-^fi«ity

al ^y point relative to that at other fwints depend the iioit

arbitrarily cho^cB. It m not. therefivre a €*>iii|,ilete defitiiti^-n

We eaii howcH’er my. and it h gofierally siitfieient for i»iir

pnrpiw,

la) If there htj X mmleeulm within a definite vcdimie S.

the ave,r^f density al any p«>int within S k N X.

(I) Again, we mm define the density at a priiiit whieh

mtweis some gmieml dmenftim,mm we may call it the relative

density. For instaiiee, snppo^ / to a mnxiuueii-* fuiictivti

rf the |M»itic)ii of a p3int, then we nmy define the den^^.ity

with reference to /* m hr isstMiee at porntn where /«§,
pTOfid«I thaf there exists an infinite number *4 meh points.

For coEsiiier my n of them, and about emh a ^ph*rre

folume m. mm be the unit of volimie. l^'t S he^

the of laol^iiles supp^^ of ei|iiikl mam which,, et the

«ati« »>f iaertia #f which, are within mmie one or .ither of

th€!»? iiiMti! iptirn-fx Then the ifeiMitj where /» § m *V m
ih# liiAul. m u m imrmmd i»fcfiBi^ly% mm reniMnifig



4 iiMme mE*mi or

T,f <if *M pnmi. m a fiiiietiyii t,f iht*

of ifmt |p-mi. I?* with ftmtr niolmile^s a niore diibeiili Kiaiter.

Let r M Imt of aftj arfeitran^ iitfd k^agth. As a first

«t€p to cmr dcfiriitioii, let tiii mj the deaiitj at a ^int P, or

jf, f . ^ 1* file atimbtr fi molmulm, of e<|ijal mass, cob-

witiiiQ a ipfaei^ of radius r de^ritel afeut P m ceBtue,

di¥t«fel hj the toltame of timi sphere. If » be that amiifer, ^
tie demity, thcii mw defiaitioa it

p m P
5n

B«t timt makc^i p gemews^lj a faiction tjf r m well m of

JF. y« r, H«iw mre we m get ni of r ^ BjItmiiiHB asd other

wntefii allef or before iiai would e«.>iaiplete the 4e&mtmm thus,

IIm
pm% P ^ whm r btmmm mjinMy mmdl, any ipice htw-

%Tr
€¥€r iniiiiitely sBiall feag amumed, for this piirposie only, to

cofitam ari iitflnitoly gtmt iiiifril>er of iiioleciiles. This defi-

siikci not iimteniilly differ fr.)fii that which we should

gite if mif gas. iastea*! of eofiakling of discrete moIaciiJes, were

a ceMiimmMs fliiii'l, aiay p'irtioia of which iimj be coficeiY'ed as

iafiiii tely mhii

Bm it m itteoajisteiit with the tea«?iiiig of lhe«e ante

writers,, who mmiulmu that moleeules have fiiiit# climefisioM,

that m fmt we ma ascertain limitji betwe€*.ii which thiBe cliniea-

iioris rnuit lie. It iimy he admittei that ao ill eonsequesce*

have yet mmen the um of this meons-isteiit deiBitioa,

arid if it be either ueet^mj or msefai, the ineoiisisteiicy seed

mn he regarded m a prions objection laeoiimstency may
mdeed be as is Bmthenmtiasm it often is in pulitim

It Biay h& idmitti^ mlm that this definition o^are to m by

iii4^tiaci wh^ we are- mkml la deine density at a poiat. That

may be be<mim^ we have |ia«ed, through a former of

eaktosoe m which matter wm sap|»^ to be mnirnuum, aail

lhefe£<3re the deisiti^ ^rietly asrarate. And oar isstiiictive

to il m die to ssausprftms mesiory of that ftiriner italic

S. We mmy avoid the difficulty by making ii further

with to the piri^^rties ©f our fjhtem I^t



erTiJMi m t»e rmmmt i

h' tfcv r%lri.f of a «phriv mhmi F 4* mn^h
A %Kt} p%?at Rifiib^^r L't r,

ikssi r, in 4 finite rati-^ I^'t ^ th^

BithifI A ’*|fct'-f^ ef r N'‘^

iM |r“i|»ert% e,*ir tkil fc aI] *,4’ r fi iiel

rj^tlie rati’j h r^ i?* TWri we inA% ^ :4t I* a.^

ttsimg tlii^ constant waltie oi m r.

Tli..k inethcd implit^is eii.lirr that the stait* ol our

ii«>t chMige fforii pjml tv p/iot m or iiial it ehacgi-si

SB gmioallv as ib W seBfiblj c».€i-stAs,t thrioighiMii tlie

fefciwetfn the tpktra# of miii m»I r,.

S- AiiiiiiiiBg that tli« itate of onr ekingcs %> m{ii«iiy

la spiles ihat: w# msiiBt rimke tlic abt^ve ft^**'Uiiipti'rii And

a»iiiBiii.g timt We scruple t*:# hm^: our definition cn an

wMcls we eWirhcfi* amtrmiKt, it to me th^l thv ei-

pne.-s»iofi ’"detoily at a
'"

or ii'yiii'b,:T of j>r

iiQil of voiiifiie At a i^uiit haa of itsfcdf 00 meaniiig wfiatever

whea the liiolec-iile.'^ itre of nuiUi dimm^uju^, but a riioaiitfig uuj
lUi* givea it in mi arbitrarj wm.. One mm wo-iild hv to take mi

arbitrarilv clii^a folooie for the tiok- I w<eaM i^ugge^t th*/

foliowiag as the Wst fjfTii of delinitiuE. l^flf l>e a cost;ii«^

IKOfeitii’e fiiaction of r which is a|iiai to uaitj for all vdm$ vf r

l» than a mrUm ikumm m, au4 Ibr w’hich
•ff

dr
m alwajs

neptive wlea r > u-, and sacfa that
|

r^¥r u a €^>ai.efgefiS

Thru deiae the deasity at F as Sim/, r kong me^urnl

fb.^m F* frt k'isg the of a mo!e%?u!e and the ^r^umiAthm

iiiCiUtiifig ail molectik- in For wish in^jiecules hmte

diiiieiidoiis. deri^iity at F unMt deii^-'iid u'ptjfi the iii^taiiCe^ »d'

iiMi} iE*4t^cules froBi F, bill imniiot ait^tcsi by wht^e

liistAseen from F mt weiy ^eat.

THE -^EEAM TlMCiTY,

1§, Am with the m ptcuely the «#iae clifficultj

priSf nSt if mt %m lo licfiaa the Mrmm wltcily, or iii



6 KINETIC THEORY OF GASES. [chap.

Professor Tait’s language, mass motion, of the gas in given

direction at any point P. M. Ladislas Natanson in a paper,

to which I shall refer later, makes use of this function

without giving any definition of it except by calling it

*"vitesse moyenne ou.apparente."' He is however, as I under-

stand, willing to assume that any infinitely small space contains

an infinite number of molecules. As the same difficulty arises,

so the same solution mntatis mutandis may be resorted to, as in

the case of density.

OF THE PRESSURE OF A GAS.

11 . The motion which we attribute to our molecules cannot,

assuming the gas to be at rest relatively to the surrounding

space, be related to any particular direction in space. That is,

at or near auy point P there are on the average of time as

many molecules moving with given velocity in any one direction

as in any other. For if otherwise the pressure of the gas would,

as shown by the next paragraph, be unequal in different

directions, which is known not to be the case if the gas be at

rest.

12. Assuming the property mentioned in the last paragraph,

and assuming the distribution of momentum among the mole-

cules to be known, we can calculate the quantity of momentum
transferred across an imaginary plane within the gas per unit

of area and time. Let m be the mass of a molecule, p the

number of molecules per unit of volume, to be defined as above

explained, and pf(V) dV the number per unit of volume whose

velocity of translation lies between V and V + dV. Then by

our assumption the number of these last whose direction of

motion makes with the normal to the plane angles between

0 and 9 + dd is

y.f(V)dV sin 0d0.

Their velocity normal to the plane is Vcos 9. Therefore the

quantity of momentum normal to the plane transferred across

the plane in one direction per unit of area and time by
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molecules having velocity V ... F+cZF" is

7

^mpV^J amffco8^ffd0=‘^mpV^.

And the quantity of momentum so transforrod by all the

molecules is
p&O

^ip V<‘/(V)dV
J 0

^^mpV^ suppose,

being the mean value of for all the molecules.

13. If further the molecules exert on ono another no forces,

twice the quantity of momentum so transferred through unit (»f

area of the plane is the normal pressure of the gas per iinit of

area of the plane. See Watson’s Kinetic Tkecrtj of Oases,

second edition, pp. 66—58.

For wo may suppose the gas confined in a vortical cylinder

under a heavy moveable piston from which molecules striking

rebound as elastic bodies. Tho moujontum normal to l,ho base

of the piston, i.e. vertically upwauis, which if it wen» an

imaginary plape would be transforrod through it, is in fact,

the mass of the piston being very great, reversed, so that twice

that quantity is transferred to tho piston, and tends to make

the piston rise in the cylinder. That is, the piston reciiivos

per unit of area and time from tho impacts of tho molecules

momentum equal to \mp vertically iipwards. It also lusquinm

by the action of gravity per unit of area and time momentum
Mg vertically downwards, wluire g is tho force of gravity, and

M bears to tho whole mass of tho piston tho same ratio whicJi

unit of area bears to the base of the piston. For cspii librium

Mg = |to/) F“ = p, tho pressure per unit of area.

If the impacts of the molecules bo sufficiently numerous
per unit of time the piston will remain sensibly at rest.
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OP THE TEMPEUATHHB OK A (»AH.

14. We have thou in tlm abHcmoo of inbonuulooular forooH

p varioH jwj p

If the moloculoH do oxort mutual forooH on ouo aaothor, the

above value of the proHHuro Ih not iusourato. Bub bh«r« are

suflS.cient roasona for bolioviug that for onliiiary gtwos under

ordinary conditiona the proHHuro ia not materially affectwi by

the intermolocular forcoa. For auch gtiaea thcu-efore, accurately

or approximately,

p variea aa p V*.

But for such gaaoa, accuratisly or approximately, the laws of

Boyle and Charloa Imld good, whence p varicis as p0, 0 denoting

the absolute temperature, lb ia tlumee inftuTcd that, accunitely

or approximately, 0 variea aa F®. Ami that atabement we

must accept proviaionally. 'remp»trature meaatired from the

absolute zero ia roproaented by th(s mean atiuare of tins velooity

of translation. On thia theory tmnpisrature ia a quality which

cannot bo attributed bo a molecule, but oidy to an aggregate of

molecules.

OK INTERMOUKCUI.AH KORCKH.

16. It ia however certain that for autliciently tienae gaaoa

intermolocular forces do exiat, and wo umat now make a further

assumption regarding thorn. We ahall asaume, namely, that the

intormolecular force li between two moleoulea

(1) Acts in the lino joining their oontroa of inertia, or

within very small limita of error may be reganhal aa so acting.

(2) Is a continuous function of thrs distance r between

those centres of inertia, which becomes (wanewauit for all valuoa

of r exceeding a very small finite tlialiuitu) r„, which (liabance

again ia negligible cornpartal with the dimenHiona of any maaa

of gas upon which we can make exporimonba.

(3) The force must for aufliiciontly amall valuoa of r become

repulsive, and should become infinite aa r ia indefinitely tlimin-

ished—but save for these reHtrietiona it may be that the force

is attractive for some values and repulaivo for other values of r.
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R shall be taken as positive when repulsive.

If c be the smallest radius beyond which the force exerted

by a molecule at the centre on another molecule is negligible,

c is defined to be the radius of action of the central molecule,

and a sphere of radius c described about the molecule is its

sphere of action, or its effective volume.

THE FUNDAMENTAL ASSUMPTION.

16. As above stated, the number of molecules of our gas

per unit of volume may be diflferent at different points of the

system considered. Eepresenting by p that number, we may
have to treat p as a function of x, y, z. At present it is con-

venient to treat only the case in which p is constant throughout

the system, and the distribution of velocities among the

molecules is the same throughout the system. That being the

case we may define as follows.

At any instant let pf^i (w) du be the number per unit of

volume of molecules whose component velocities in the direc-

tion taken for x lie between u and u-\'du. Similarly let

pfy {v) dv be the number per unit of volume whose component

velocities in direction y lie between v and v -I- dv, and pfg (w) dw
the number whose component velocities in direction z lie

between w and w + dw.

We might say, and it would be precisely equivalent to what

we have already said, that fx(u)du is the chance that a given

molecule shall have velocity in x between u and u 4- du, and

fy {v) dv,fz (w) dw are the corresponding chances for y and z.

17. These definitions, however apparently unambiguous,

may be based upon either of two diametrically opposite

assumptions.

We may make namely, assumption A.

A. The chance of any molecule having velocity in x between

u and u + du is independent, not only of its position in space,

but also of the velocities v, w, which it has in directions y and z,

and further except in the case mentioned below, it is inde-

pendent of the positions and velocities at the instant of all the
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other molecules of the system. The oxcM)|)tocl cme is when the

two molecules are so placed that they arc, or very recently have

been, within one another’s sphere of action. Thc^ force of this

exception, and the necessity for it, will appc'ar in the considera-

tion of the H theorem, Chapter lIL

On that assumption it follows that the chance of any given

molecule having at any given instant velocities in w, t/, z

respectively between a and ii + du, v and v + dv, w and w -f dw,

is {u)fy (v)f^ (w) dudvdw.

Further, if we consider any pair of molecules, and denote

by the suffix 1 quantities relating to the first, by the suffix 2

quantities relating to the second, then the (jhanee that they
shall at any instant resp(ictiv(^ly havt^ velocitii^s

in X between Ui and Ui + dui^

and u,^ + du,^;

in y between t;, and Vi^-dVu

Uj and Uj‘+’dps;

and in z between Wi and + dwi ,

m.j and 4- dmj,,

is ('^g) • * * duidvidwidu^ . .

.

This or its equivalent is the assumj)tion on which th(^ kinetic
theory of gases has hithen’to generally beam treated^, I shall

refer to the state of things asHumcHl as condUmi A. Without
doubt it may bo assumed legitimately with respect to the
limiting case of an infinitely rare gas, that is on© in which

* Dr Watson {Kmetic Theory of ‘ind Edition, p. B, otemtion B)
assumes the independenoo of the ehanoos for two Hpluires apprtmehiny collMm.
And that is sufficient for his purpose. Professor Tait (’* Pomuiatious of the
Kinetic Theory of Gases,” TramacMvns IL S, Fdinburyh, IBS8, Art. 21) makes
an equivalent assumption. Dr Boltiginann (VorUmmym llher Go# ThtdiHi,
Part I, p. 23) assumes that the motion is, and over ti(»ntiiiuoi to bo,
“ molecular-ungeordnet.” I shall consider later (Oliaptcir in.) what may be the
effect of that assumption. In the meantime tlie woapt)n that Dr Boltzmann
draws from that armoury is precisely the same as the one uwid by Watson and
Tait, namely, that for all pairs of spheres or moU^culos approttehiny eolUnion tha
chances are independent, as stated in my condition A. These writers do not
define the exception, the occasion for definition not having arisen, but they do
not assert the independence in the excepted case.

I
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the dimensions of any molecule, or if it be a centre of force,

its radius of action, are negligible compared with the mean
distance between any molecule and its nearest neighbour.

It is probable also that all the known gases under ordinary

conditions of pressure and temperature, approximate closely to

the limiting condition of infinite rarity. And therefore the

calculations made on the assumption of condition A or its

equivalent by Tait, Boltzmann, and others, of the rate of

diffusion, conduction of heat or electricity, &c., for such gases

remain unaffected.

18. Or we may make assumption B.

B. The chance of a given molecule having at any instant

assigned velocities is not independent of the positions and

velocities of all the other molecules at the instant. On this

assumption B, instead of deducing the chance of the members

of a group of n molecules having respectively at any instant the

velocities

% . . . ^^l + dui &c.

from the assumed chances for individual molecules, we must

reverse the process. Let the chance that at the given instant

the coordinates of the n molecules shall lie respectively between

a)j and

Ui and yx + dy^,

and Zx -H dzx\

for the first molecule,

0[)<2 and ii/2
*4" doc2>

&c.

for the second, and so on,

and their component velocities between

Ui and Ux 4- dux^

Vx and Vx-\-dvxy

Wx and Wx + dwxi

for the first molecule,

and U2 + du2
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for the second and so on, bo denoted by

F{x^i . . . Zn^l'lOi • • • Wn) dcBidyi . . . dwn.

Then the chance that the x velocity of the Hrat molecule

shall lie between
•Ml and 111 + dui,

whatever be the po.MitionH and velocities of the other n — L

molecules, is

//
• • dzndvidwidii^ . . . dwn) F (®,2/i . . . Mi . . . w^)-

19. By way of illustration lot us suppose, under condition A,

/(«) = (/«-"

where C is the usual constant, choHon so that

of e~^'‘'‘du‘^ 1.

J -(M

Then on assumption A tho chances that the tnembers of the

group of n molecules supposed to be of e(pial inasHes, shall

respectively have their coorclinatos and volocitios between tho

above limits is of tho form

... dzndux ... dWn,

where Q = S -h 4- and h is constant
;

and in dealing with assumption B, lot us asBume, the molecules

being all of tho same mass and the same structure^

where ...

4* 6ia {lh%^ 4- ViV^ d- WiW^)

+ 6i8 4- ViV^ 4- WiW^) + &c.

Here the b coefficients shall be fimctions of the distance r, at

the instant between the pair of molecules to which tho suffixes

relate, which functions becotno evanescent when r exceeds a

certain very small distance. In that case omitting the constant

/(%) = JjJ
dwi.., dzndvidwidt^ . . . dWn

= e
, as shown in the Appendix (7).
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Here D is the determinant of constituents

2 612 618

^12 2 623

&2S 2
i) =

and i)ii is its first coaxial minor.

The form of f{u) under assumption B is the same, except
for the factor of A, as under assumption A, but the physical

state of the system may be very different. For instance, under
assumption B, two molecules at a distance r apart, so small
that the corresponding h is not negligible, are, if h be negative,

on average moving in the same direction. According to Bolt:z-

mann {Vorlesungen, p. 21) the motion in this case is not
“ molecular ungeordnet.''

20. Of these two assumptions A and B, B includes A as a
particular case. It is therefore better, if and in so far as it

may turn out to be possible, to establish a proposition on
assumption B, rather than on assumption A. My object in

the present treatise is to show that it is generally possible.

will appear also that A requires us to assume our gas to be
infinitely rare, whereas B imposes upon us no stringent con-
dition with regard to the density. The only condition in. fact

which appears to be required at present is this : the coefficiontn

h must be such that for all possible values of the u'b, v'b, and
-w^'s, Q shall be positive. Mathematically that is expressed by
saying that the determinant D and all its coaxial minors must
be positive.

D will appear to be generally a function of density and
temperature, and if ever i) = 0 the mathematical treatment
changes, whether or not the physical system changes its state,

and if so whatever the nature of that change may be.

It will appear also that if u, v, w be the component velocities

of a molecule of mass m, u\ v\ w* those of any other molecule,

^ (W + m' + ww'^

is related to the Virial defined in Chapter ll. of the intermoleculiJtr

forces acting on m. See Arts. 58, 85.



CHAPTER TI.

f,

ll

CLAUSIUS' THEOREM.

21. It will be necessary to consider at length later the law

of distribution of velocities or inornenta among the molecules

for any given value of the moan kinetic energy—that is the

form of the function which we denoted above, Art. 12, by/( F).

The following proposition, duo originally to Clausius, is inde-

pendent of that law.

If m be the mass of any one of a system of molecules in

stationary motion, oo, y, z the coordinates of its centre of

inertia at any instant, we have, S denoting summation for all

the molecules of the system, and iiwy, %mz l)eing zero

or

with similar equations for y and z.

It follows that

{(S) (S)
~ ^

X, Y, Z being the component forces, whether external or

intermolecnlar, acting on a molecule.
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22. We will now however reserve X, F, Z for the com-

ponents of external force only, and let li be.the internioleeular

force between two molecules acting in the lino joining their

centres, and let i4, ii?/, Ht be its components. So that Clausius’

equation becotnes

((S)’ + (!) + (1)1
= - s

( 1 ).

Half the expression on the right-hand side of the last

equation is called the Virial. And 8epax*at(dy

-^(Xx^Yy^Zz)
is the Virial of the external forces, and - -f Ry-y q- R^z)

is the Virial of the intermolecular forces.

23. Let one molecule be at P or m, y, z, anotluir at /*' or

y\ z\ Let = {x — x'f + {y — y'f •^{z- z'yi Fhcix f<n* tlu^

force on P due to P\ R being taken as positive when nipulsive,

X — x'
R. Jt, R, = y~Ji R, R,^

r ' " r

Similarly for the force on P' due to P,

X — x'

R,

/4 =

r
R,

r
’ ^ r

and thereforo for two moloculea at P aiici
/*'

S (R^ + Ryy + R^) = R ±(£- « Hr.
T

And so the term in Clansius’ ofniation due to the inter-

molecular forces is

22 (RaOi + Ryij + R^z)= 22iir (2),

each pair of molecules being counted once.

24. We have next to consider the external forces, whose
components are X, Y, Z. I shall follow Van dor Wjials’

method.

Let the whole system he enclosed by a surface H, through
which the molecules cannot pass. Let p bo the normal pressure

t

I
!•

I

\

I
I
I
I

l.

i

m.

i

t
W'
i'

f
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per unit of urea on 8, directed inwards. At any point P on 8
let X, /jb, V be the direction cosines of the normal s to (Sf at P,

I, m, n those of a the lino joining P with the origin. Then for

a molecule at P

— (Xx +Yy + Zz) =>f (iXa + myaa + nva)

= jsa cos (j?, tt)

da

if ds be an element of the normal, meaBurod outwards,

da^

ds
'

8.

Let us now assume p to be constant over the whole surface

Then

jj(Xx+Yy + Zz)d8

— ^P
Jjj

^^('’•dtcdi/dz

throughout the space enclosed by 8, by Green’s Theorem,

= 3poi),

if a be the volume enclosed by 8.

Wo see then that the Virial

or by (1) fpw = (u.® + v‘ + w») + (3);

or, if T be the mean kinetic energy of the system of molecules,

T
and — represents the mean kitiotic energy of a molecule.

If we take the volume w for a generalised cooniinate,

supposing it to change in magnitude but not in shape, the
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other coordinates of the system may be wlmm
T dT

y, &c. are numerical. Then | ,
and if % be the

potential of the intermolecular forces |2Siir/<5i)

equation assumes the Lagrangian form P being

the applied force which maintains (o constant,

26 . If the surface S be an imaginary closed surface, tin*

system of molecules in the external space being homogeneous

with the system within the pressure per unit of area of

is given by the above equation,

^pco = S-J-m (y? + + w^) + -J-SSiir.

The whole Virial or fpco — l-SSiir is tluis etjual to the

whole mean kinetic energy of the molecules witliin S, It

does not follow that the two parts of the Virial, namtdy

and — 22-J-JSr, are separately proportional to

26 . If S be the external elastic boundary of the Hystem

through which molecules cannot pass, we might eal(uilat(‘ p by

the same method as we calculated it in the casii of tluuH^ luung

no forces, namely p = ^7np'V''\ where p' is the imuui density, and

the mean kinetic energy, of itiolecules luuir H. Tliis

result is not inconsistent with Art. 24, because tins mean
potential energy near S is, in the case now supposed, diffcu’ont

from the mean potential energy throughout the enclosed spaccL

and so F'® + F® and p' 4= p.

The value of SSJSr for Elastic i^pdmres,

27 . We have assumed R to be a finite force. In the

limiting case of so-called elastic bodies, the force which acts in

collision between two such bodies is, according to thc^ usual

convention, an infinite force which reverses the velocities of the

colliding bodies normal to their tangent plane at collision in an

infinitely short time. As a consequence of the time beitig

infinitely short, no change takes place in the coordinates duidug

B, 2
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collision, and no body can ever be in collision with more than

one other body at the same instant.

It is of course admitted that no such body exists in nature.

But the behaviour of gas molecules in regard to their mutual

action is probably, at least in the case of rare gases, approxi-

mately the same as it would be if they were elastic spheres of

this form. And the assumption made in the case of the

spheres that^the kinetic energy of translation of two spheres in

collision is in the aggregate unchanged by the collision, must

if molecules are stable be true on average for any form of

molecule.

28 . It is then possible to calculate for a system of

elastic spheres, regarding the force as finite, and sufficiently

great to produce the reversal of the normal velocities in a

finite time r, and treating the coordinates as constant, to proceed

to the limit when the force becomes infinite, and r zero.

Let the colliding spheres be each of mass m, and of

diameter c. Let p be the number of spheres per unit of

volume.

Let T be now the mean kinetic energy of a sphere. And
let u, V, w, u\ v\ w\ be the component velocities of any two

spheres, V their relative velocity. Then

= (tt — uy 4- (y — vy 4 (ty — wy,

and = 2m {v? 4 ^ vf) on average

= 4ir.

Let 9 be the angle between the relative velocity and the

line of centres at collision. Then for each sphere the normal
component of relative velocity is -J-F cos 9, and it is reversed in

time T. The assumed force is then JR = mF cos 0/t, and it acts

during the time r. The number of collisions per unit of

volume and time is, given F, nrc^Vp. And the number for

which 9 lies between 9 and 0 4 is

27rc®Fp sin 9 cos 9d9.
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bodies, that a certain momentum is instantaneouBly transfcirred

through a finite space. The responsibility for that assumption

rests on the inventor, whoever he was, of the theory of rigid

elastic bodies. Consider a vertical column of gas, or material

system, whose molecules are equal elastic spheres, under a

constant vertical force /.

If p be the pressure per unit of surface, so the height of a

point in the column above a fixed plane, m the mass of a sphere,

p the density, po density at the base, we have

also by (5) jp = I (1 + pT.

Whence, if we make

T = constant =

we find - 2mfh = + |7rc»
,

or p

Again, consider N spheres crossing the plane «.• =» 0 with u
for vertical component of velocity. Of these some, my N—N',
will reach the plane 00= dm without collision. N' will undergo
collision before reaching dm. But for those N' there will in
stationary motion be substituted, as the result of collisions. N'
other spheres with the same vertical component u.

Now, if the impact were direct, ie., the lino of centres at

collision vortical, the effect of the
collision would be to substitute for a
molecule with vertical velocity u at

height m a molecule with the same
vertical velocity w at height m + o,

where c is the diameter, or, as we
may express it, the substituted sphere
would gain a vertical height c, with-
out losing in respect of that disttmco

any kinetic energy to the force/ We might without affecting
the general motion suppose the two spheres to change places
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after collision, so that one would lose, and tho other gain, the

height c without change of kinetic energy. If, therefore, all tho

N' collisions wore direct, tho average height of tho iV sphoros

dw
or their substitatee at the end of tho time— would bo, not dw. but

u
j\r'

dx + ^ 0
,
while their Iobb of kinetic energy would bo Mmfdm,

But all impacts will not bo direct
; wo must oonsidor thou

the result of indirect impacts. For this purpose consider two

classes of oolliBions, in one of which tho sphere A has vertical

component u before collision, and in tho other A' has vertical

component u after collision. Tho effect of a pair of coIliHions one

from each class, is to substitute -^^I'forJ. as the sphere with verti-

cal component u. Now lot I (see figure) denote tho veevtor line

of centres at collision, and cos (td) the cosine of tho angle which

I makes with the vertical Then in the first of Urn pair of

collisions the centre of A is below the point of contact by

•J-ccos {uiy In tho second, the centre of A' is above th(^ point

of contact by ^gcx)b(uI). T\mm is no reason why thc» point

contact should bo higher or lower in one case than in the other.

It will be on average at the sanu^ height. Therefore tm aviu’age

of all pairs of collisions substittiting A' for A with vertical

velocity % A^ m above A by

c cos (ul) M r, suppose.

Let q be the relative velocity of the two colliding spheres.

Then considering q as radius vector of a cone of axis a, and I as

radius vector of a cone of axis g, wa gat

r * 0 COB {uq) cos (gT)

« |o cos (ag),

because co8‘(p) = c()h« $ sin 6 dO
j

cos 0 sin 0 dS » f.

Let V be the absolute velocity of the sphara whose vortical

component of velocity is u, so that

cos {m)
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Let yjr bo the velocity of the other colliding nphoro, the

anghs Ixitwoon v and yjr. Then

<iOH E
r= *0

u V •

We have to multiply this by the

number of colliHiona which JSf

spheres having velocity v undergo with spheres of velocity

+ making with v angles E ... E + dE in time dt, or

dx

u ,
and then integrate for all valucis of and E.

Let pf{'^)d'^ be the number of spheres in unit volume

with velocity -^ ... + The result is

nr « r j, X/ ,\ r I
• t,yj V s

cos E dm
Nm^p df/(f) i Hin EdEq^o - ^

—

« IwG^p . Ndx

« /cNdw.

Therefore at time dt the averagtJ height of the N nphoriiH or

their successors above the plane 0 is (1 4- K)dm,

But the energy which allowing t()r Hubstitutions they lose

in the ascent is Fm/duK The loss takes place only during

free path. It follows that the loss of energy due to the ascent

doo is, allowing for substitutions, mf(h{l--‘K) per sphere.

Now suppose that at afasO the number per unit of volume

of spheres having . . . d (u^) for energy of vertical velocity

is

where K is constant. Then, by what has betm proved above,

the number which at height dm have d(u^) for energy

of vertical velocity is
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and the number which at height dx have

. . . c? {u^) — mfdx (1 — k)

for energy of vertical velocity is

^—2h7nf9x^’-9K {mu'^—2mf9x) (i—k) )

that is, ^y2

because, neglecting /c% &c.,

fC =

and therefore 2hmfKdx = — d/c.

The two groups (a) and (6) are equally numerous, and

therefore either can by ascending or descending, allowing for

substitutions, exactly replace the other. Now this is the

reasoning by which in the ordinary case, when = 0, we prove

p = It now proves p =

I shall refer to this problem later for illustration.

30. The pressure per unit of surface is increased in the

ratio 1
: (1 + \k) as the molecules, from being material points,

become spheres with finite diameter c.

But the pressure per unit of surface is the quantity of

momentum which is carried through unit of surface in unit of

time. Art. 12. Now, so far as this momentum is carried

through the surface by molecules during their free path, it is

not altered in the least by k acquiring finite value. The
increase of the transfer of momentum consists in the case of

elastic bodies in the process above explained, namely, the

instantaneous transfer of momentum through, a finite distance

which occurs on collision.

The result of Art. 29 may also be explained thus. The
mean effect of all collisions on any sphere is equivalent to a

force /^acting from the greater to the less density.



CHAPTER IlL

THE DISTIUBtTTION OF MOMENTA AMONG THE MOLEGULEH,

ABSUMING (CONDITION A.

31 . The Hiinplont form of molcculo that wo can concoivo in

an elastic sphere, such as described in Arts. 28, 29.

An elastic sphere, so conceived, may bo conHidorod as having

three dcgi'ees of freedom only, namely, motion of translation

in space. iFor the spheres being siippoHod perfectly smooth,

motion of rotation about an axis, if non-existent, will not bo

produced, and if existing will not be altered, by collisionH.

Let u, Vf w be the coinponent velocities of a molectde, m its

mass. Then the moleculoH being elastic spheres of nuwss let

the number per unit of volume of molecules whose velocities

in direction os lie between n and n + du \h) proportional to

This is called Maxweirs distribution. It has been

proved by several writers that asstnning this distribution

to exist, and asHuining Gondition A (which is necessary), the

distribution will not be disturbed by collisions between the

spheres.

My object in the present chapter is not to give another

proof of this proposition, but ho show in what manner condition

A affects the truth, as well as the proof, of the proposition. I

shall therefore follow the general method elaborated by Boltz-

mann and Watson, m being more convenient for my purpose

than other known proofs, e.g. Professor Tait’s.

32 . ConBider two sets of spheres, one sot having mass Af,

the other mass m. Let the number per unit of volume of M
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sphercB be of m spheroB p^. Lot ub form a diagram of

velociticB, the velocity of any sphere of either set being repre-

sented in magnitude and direction by a line drawn on the

diagram from the origin 0 to any point P or m, t/, z. At P
suppose an element of volume dauiydz. The number per unit

of volume of spheres if whose velocities are represented by

lines drawn from 0 to points within that element shall be

y> ®) dmdydz,

or shortly p^Fdaidyde,

Call these the class F(da:dydz).

Similarly the number per unit of volume of spheres m whose

velocities are represented by lines drawn from 0 to points

within the element of volume d^dyd^ at the point f, y, f shall

be pm/(E y, 0 d^dyd^,

or shortly Pmfd^drjd}^,

and we will call those the class

fdldndK.

Wo may also express the above detinifcions as fellows. I’ho

ohance that a sphere'. M shall belong at any iiistiant to tluj class

Fdxdydz is Fdwdi/dz. 'i’he chance tliat a sphere m shall belong

at any instant to the chiss fd^dyd^ is fd^d/qd^.

33. Now assume condition A.

Then the two chances are independent. And therefore the

chance that a pair of spheres, M and m, shall Isdong, M to tlu^

class Fdoodydz, and m to the class fd^d-qd^, is

Ffd^drjd^dwdydz.

On our assumption of condition A this is true oven if the
two spheres are on the point of collision, and therefore very near
each other. For that case is not within the exception defined

in Art. 17. If we assume B instead of A, it may bo tnio only
if the two spheres are at a considerable distance from each
other. But in this chapter I assume condition A. On this

assumption the number per unit of volume of pairs of spheres,

M and m, which have velocities between the limits afonssaid.
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and for which m lies within the element of volume (11», ho situated

that M and m are ajtpromhing ooUmon, is Ffd^drjd^dmdydzdm.

If the element dm bo so situated that M and «t arcs separating

after collision, the case is within the exception of Art. 17, and

therefore condition A does not apply. Let us now define dm.

Let, namely, = f)® + (y -»?)’+(* — t)’, so that H is the

relative velocity ofM and m.

Let 0 bo the sum of their radii. About the centre of M
suppose a circular area described with riulius o in a plane

perpendicular to R, and lot

dm «= TTC^Rdt.

Then the number per unit of volume and time of collisions

between spheres M of the class Fdxdydz, and spheres m of the

class fd^drjd^, is

pjuPmFdxdydzfi^dyid^iro'^Jt.

And the whole number per unit of time of colliHions which

members of the class Fdwdydz undergo with spheres m of any

class is

f
+w

fd^drid^rro^lL

Each of these diminishes the number of the cliuw Fdmiydz

by one. So the rate of diminution per unit of time of the class

Fdadydz due to collisions between its momhers and spheres m

is pupmFdxdydz
JJJ

fd^dijdl^iro^Ii (0).

The Effect of CoUimm.

34. We have now to find the number of spheres M which

by collisions with spheres m pass into the class Fdmdydz jKjr

unit of volume and time. Let P, p bo the centres of M and m.

On a collision the only thing that changes is Uio direction

of jB. And that change depends upon (1) the angle which

the line of centres Pp at the instant of collision makes with R,

(2) the angle which the piano through a line drawn through

the centre of if parallel to R, say P«, and the imint of contact

of M and m makes with a fixed plane through Fn.
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The direction, of R after collision is in the same plane

through Pn, and makes the angle 2\/r with Pn, That is the

easiest way to picture to oui'selves the effect of a collision.

In order that a collision may take place, it is necessary that

a line ps drawn through p parallel to R should cut the circular

area above mentioned. We may divide that circular area into

elements whose type is 2c^ sin cos '\lrd\lrd(l>. Assuming con-

dition A, the line ps is as likely to cut the circular area in any

one point as in any other. Therefore the chance that the new
direction of R shall make the angle 2yjr,,.2'slr+ d^jr with the

original direction of R is proportional to 2 sin -x/r cos x/rdi/r, that

is to sin 2y\rd'y\r. It follows that, assuming condition A, for any

given direction of R before collision, all directions after collision

are equally probable, and on averiage the whole kinetic energy

is divided equally between the spheres.

36. The direction of R after collision is then a function of

y,

Let the new values of these variables be denoted by the

corresponding accented letters. Evidently yjr, (/> are unaltered,

or
(f)'
=

(f>j
yjr' = '\Jr.

All those pairs of spheres for which before collision the

variables ^ f are between

^ ... a;

and ^Jr, between limits

'x/r . . . + d'y^j
(f)

... (j) + dcf)

will after collision have these variables between limits denoted

by the corresponding accented letters.

Now let pjyrF'dx'dy'dz' be the number per unit of volume of

M spheres which at any instant belong to the class F'da/dy'd/.

Similarly after collision m passes into the class f'd^'drj'd^\

whose numbers are f'd^'drj'd^^

36. If after collision the velocities of M and m were

reversed, without change of their positions, they would by a
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reverse collision pass into the classes Fdxdydz and fd^drjd^

respectively but with reversed velocities.

It follows that the number of pairs of spheres, M and

which before collision belong to the classes F'dxdy'dz' and

f'd^'d7fd^' respectively, and by collision with given values of

\lr and </) pass into the classes Fdxdydz andfd^dy\d^ respectively,

is, again assuming condition A,

pMpmF'dx'dy’dz'f'd^'drj'd^ 2 sin yjr cos '>^d'y^rd<f>c^R,

37. Now x', y\ z\ rj\ are functions of x, y, z, tj, yjr,

and of those quantities only. Also the system of two spheres

passes with unchanged kinetic energy from one state to the

other.

Whence it follows by the general proposition proved later.

Art. 50, and can be proved independently, see Watson’s Kinetic

Theory of Gases, second edition, p. 9, that

dxdy'dz'd^'drj'd^' = dxdydzd^drjd^ (7).

Therefore the number of pairs of spheres, M and m, which

per unit of volume and time pass out of the classes F'dxdy'd/

and f'd^'d^'d^' into the classes Fdxdydz and fd^drjd^ respec-

tively is with given and ^

pMPmFf'dxdydzd^drjd^ 2 sin yfr cos '\^d'^d(f>c^R.

And if now ri, i/r, (j> vary, we find for the number of

M spheres by which, owing to collisions between M and m, the

class Fdxdydz is increased per unit of time the expression

PuPm^^y^^ [f[ d^drjd^ f^f 2 sin \fr cos '\jrd'\Jrdcl>F'f'c^R
J J J - 00 J OJ 0

= pMpmdxdydz
jjj

d^dr^d^Ffird^R.

But the number by which the same class is diminished per

unit of time by collisions with the m’s we found to be

pupmFdxdydz
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If therefore ^ dscdydz denote the change per unit of time

of Fdxdydz, due to collisiotiH ofM with m,

dxdydz = dxdydz
JIJ

d^dydK (F'f - Ff)M . . .(B).

Similarly

f^d^d^d^^dldyd^
III

dxdydz (F'f -Ff)7rc^R (Ba).

38. If F'f = Ff in all cjiaes it» which a pair of apheros M
and m can by collision pass from the clasaoH F atul / to the

dF
classes F' and /' respectively, or vice versa, = 0. Similarly

^=0. And this being true for all values of and f, the

motion is stationary. Assuming then condition A, F'f » Ff is

a sufficient condition for stationary motion.

The proof that it is a necessary condition is due to Boltz-

mann, and is as follows.

Let IT Bs

III
dxdydzF(logF— I

)

+///_'}W?./-(log/-l).

Then
III

dxdydz log F

+ llld^dvd^^logf

dF df
And substituting for and ^ thoir values above found,

^ = //
dxdydz

Ij
j^'j^dvd^

Ij
{Ff ~ Ff) (log F + log/)M

= dxdydz d^dyd^{F'f-Ff) log(i/)7rc«it...(9).
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But in the course of this integration x, y, z and rj, ^ assuir

all possible positions on the diagram of velocities, and therefoi

assume the positions corresponding to any F' and f\ and ther<

fore F and / among other values assume the values F' and f
Whence

^= dxdydz
IIJ

d^drid^ (Ff- F'f) log . .(10).

and adding together (9) and (10)

dxdydz
III

d^dvdUF'f' - Ff) log^ -rrc^B . . .(li;

And this is necessarily negative, if not zero, and then onl;

zero when jFy' = J^for every case in which two spheres cai

pass by collision from the classes F and / to the classes F' an<

/' respectively, or vice versa. But in stationary motion ^
must be zero. Therefore in stationary motion, given conditioi

A, F'f' = jy, is a necessary condition. A distribution o

velocities in which F'f' = Ff for all cases in which a pair o

spheres can pass by collision from the state F and f to th<

state F' and/' or vice versa shall be called the normal distri

bution. Any other distribution shall be called an abnorma
distribution. The H theorem proves that when the distributior

is abnormal is negative.

This is known as Boltzmann's minimum theorem, or the

H theorem, and H is Boltzmann's minimum function, or, as he

s sometimes calls it, the Entropy function. The theorem is as

here given, founded on, and depends for its existence upon,

condition A, without which we cannot use the product Ff to

* express the frequency, or chance, of the simultaneous occun'ence

in collisions of the two states denoted by/ and F.

On the H theorem. An objection considered.

39. If when the entire system of elastic spheres has, with
H diminishing, reached a certain state, all the velocities were
simultaneously reversed without change of the coordinates, the
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system would exactly retrace its course with H increasing. It

is therefore possible, when a system is set in motion, for H to

increase in that motion. This was at one time considered an

objection to the theorem, because the theoi'em was supposed to

prove that wider no possible circumstances could H increase.

It however does not profess to prove that H always diminishes,

but that, assuming a certain condition H must diminish on

average. For the assumption underlies the whole proof as

hitherto given.

Now to meet this objection, consider two spheres, M
having velocities x, y, z, and m having t), Construct

a spherical surface of radius c about the centre of M, and

consider the element of volume

2c^ sin yfr cosyfr dyjr d<f> Rdt = d(o.

If m be within dco, the two spheres are either (1) approaching

collision, or (2) separating after collision, according as dco is on

one or the other side of M. Condition A asserts that the

number per unit of volume of pairs of spheres, M and m,

belonging respectively to the classes F and /, which are ap-

proaching a collision of that kind

—

i.e. a collision with the given

i/r and —is Ffdx.,,dl^d(o, see Art. 17 and note. But con-

dition A does not assert that the number per unit of volume of

such pairs which are separating after a collision of that kind is

Ffdx,,,di^d(Oj because that case is within the exception of

Art. 17, In fact if x, y, z and rj, f denote the precollision

velocities of the separating pairs, x\ y\ &c. their velocities after

collision, the separating pairs are the identical pairs which dt

seconds ago had respectively velocities

x,,.x^dx
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and were approaching a collision of the kind in question. The

number per unit of volume of the separating pairs is therefore

by our assumption of condition A
Ffj dx.,.d^, dco,

or which is the same thing,

Ffdx\...d^'dco,

and not F'f'dx ,..d^'d(o. (We are assuming at present that

Ff^Ff\) Now in the reversed course the pairs which in

the original course were separating have become the approach-

ing pairs, and vice versa. Therefore in the reversed course the

number per unit of volume of pairs, M and m, which, belonging

respectively to the classes F' and f\ are approaching a collision

of the kind in question, is Ffdx'...d^'dco, and not F'f'dx'...

d^'dcoj as according to condition A it should be. We see then

that condition A is not satisfied in the reversed motion, and

why not.

The fact then that in the reversed motion H increases with

the time is no objection to the H theorem as a mathematical

proposition, because the reversed motion does not satisfy the

condition on which the H theorem is based.

40. We now see the necessity for the exception referred to

in Art. 17. For if condition A continues to exist throughout

the direct motion without that exception, it must also continue

to exist throughout the reversed motion. Therefore by the H
dJS

theorem is negative or zero in both motions. But if it be
at

negative, and differ from zero, in one of those motions, it must

dH
be positive in the other. Therefore must, if we assume

condition A without exception, be zero in both motions.

In other words, if we assume condition A with the ex-

ception, the mathematical consequence of our assumption is

that H is either minimum or diminishing, as the theorem asserts.

If we assume condition A without the exception, the mathe-

matical consequence of our assumption is that H is minimum
already. This condition is satisfiedJbj^i Maxwelfe^istribution.

AtbtAHGH jNSTITUII

BANGAlGtE 6

*S7o*i*

!

Clue Ne.
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41 . We must now consider Boltzmann’s own assumption

that the motion is “ molecular-ungeordnet.” It being assumed
that in the direct course the motion is molecular-ungeordnet, is

it molecular-ungeordnet in the reverse course, or not ? I think

Boltzmann’s answer to this question would be in the negative,

on the ground that we, or Maxwell’s corps of demons, have

'"ordered” (geordnet) the motion by the very act of reversal.

If this be so, then “molecular-ungeordnet” has, as applied to

this theorem, precisely the same properties as my condition A.

See Vorlesungen, p. 42.

Let us endeavour to construct synthetically a system which

shall without doubt be molecular-ungeordnet. The molecules

being distinguished by numbers, I ask (say) Dr Watson to

assign velocities to them according to any law he pleases.

Then I, in complete ignorance of those assigned velocities,

scatter the molecules at haphazard through space, and they

shall start from the positions which I so give them with the

velocities so assigned by Dr Watson. That is, primd facie, a

molecular-ungeordnet system—in fact it is as near an approach

to chaos as is possible in an imperfect world.

Clearly also in this system condition A is satisfied, and the

system will, or in all probability will, move from its initial

position with H diminishing. Equally clear is it that if in the

initial position all the velocities were reversed, condition A
would be satisfied, and the system would, or in all probability

would, move off in the opposite direction with H diminishing^.

It follows then that if the selected distribution of velocities be

abnormal, the state in which we have placed the system is one

from which the system can and probably will move with H
diminishing, but into which it must move with H increasing.

dJEC
* This statement is not inconsistent with that of Arts. 39 and 40 that —

changes sign on reversal of the velocities. For in those articles the pairs of

molecules having velocities x', <fcc. are separating after an actual collision,

before which they had velocities x, &c. Corresponding to the classes x,

their number is Ff» In the synthetic system no collision has taken place, and

the number is F'/'.

B. 3
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ilE
If the ByBtom were to move' through that ntiite, would be

diBcontiuuouB.

It may indeed, if the dintribtitiou of velocitieB happeim to bo

the normal one, be in MaxwelTH dintributitui. It eanuot be one

of a Horiea of HtatoB thrtuigh whieh tlu^ Hyntein panHoH in itn

approach to MaxwellH dintribution, m the II theorem recpiireH.

The Bystem then which 1 have Hupponed to be constructed is

not, as appears to me, in Boltxmann’s ncaise rnolecular-unge-

ordnot. It should seem that the molecular ungeordnet state

must cease to be such on nwersal of the velocitiea

What the II theorem provt^s them is this, that the distri-

bution of velocities expresscal by the (Mpiation Fy*' » Ffm the

only distribution whieh can be ptvrmanent eonsisttuitly with the

existence, and the continued t^xistemun of condition A or its

equivalent. It is jisHumc^d witlmut proof; and m 1 hope to

show m the HUccetHling chapters is not giuierally true, that

condition A can and <lo<m continue to exist.

The rate at which II dimitusht^H has bc*cn (!alculated by

Tait, Watson, and othtu's for (un'tain very intcoH'sting vmm. Hm
Watson’s work above refVmrcHl to, Art.. If).

42 . Boltzmann (s(‘e Hmiin HiUmufHbmiahU^ Febrtiary

1897) considers that we have in tliis behaviour of the system a

true irreversible process, ^fhat term is gent^rally applied only

to processes involving dissipation of tmergy, that is conversion

of some other form of energy into heat. If however heat, or

temperature is to be explained m the kitietic energy of mole-

cules or atoms moving according to usual dynamical laws,

every process, oven if it does involve conversion of other forms

of energy into heat, is theoretically reversible
;
would in fact be

reversed if at any instant all the velocitit's wertj reversed, as we

assumed them to bo in discussing the II theorem. If that be

so, by assorting that any process is irreveraibki we assert only

that by no means within our power can we reverse it, bcjcauso,

that is, we cannot control individual molecules. It is in this

sense that, as I understand, the diminution of li in accoitlance
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with the theorem would he called by Boltzmann an irreversible

process.

Boltzmann also shows (Vorlesungen, pp. 68—60) that —M
differs by a constant only from the logarithm of the chance of

the system being in its actual state, and therefore as JI

diminishes in absolute value, the system passes from a leas to

a more probable state. See note at end of chapter.

43. A solution of the equation

F'f' = Ff,

for the two sets of elastic spheres is

f=

That is found by treating the kinetic energy as the only

thing which remains unchanged by the collision. It follows

from this solution that for the same sphere a:* = y'^ = and

that for different spheres &c.., or the tnean kinetic

energy is the same for each sphere whatever its mass.

44. The complete solution of the equation Ff^F'f, as

given by Boltzmann, Vorlemngen, p. 181, ia

/=
where J, is a function of the coordinates, and

Q = m{{ct- uf + (/S - vf + (y - wf\ (18),

u, v,w being constant velocities; F has the corresponding value.

In stationary motion = 0, that is

Suppose now the system to bo in a field of external force

whose potential is %, e.g. the column of Art. 29.
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If no other forces act on the system than those derived from

X, we have

.(14),^ (da du'\^ dx
'‘^\dt dt)

~ dx

and therefore the equation becomes

(16 ).

the solution of which is A = (16).

For instance, if the molecules be elastic spheres of infinitely

small diameter, or material points, between which no collisions

occur, there ^re no forces except those derived from %, and we
deduce by the above method, A =

The expression now asserts that the chance of a molecule

having velocities a ... a + da &c., and being in a position where

the potential of the external force is X-.-X + dx, is

e~2/ix e~few{(a-w)2-i-&c.} dad/Sdydx-

It follows that the distribution of the velocities is the same for

all values of x, fhat is in all parts of the system, and that the

number of molecules per unit of volume is proportional to

This agrees with the result of Art. 29, because in the

case now supposed /c = 0.

45. If the spheres have finite diameter c, so that collisions

do occur, there are other forces acting besides those derived

from X, namely, the infinite forces assumed to act for infinitely

short times during collisions. And it is no longer true that

and we cannot obtain the result

except by ignoring the infinite forces altogether. It is trne

indeed that they act in equal and opposite pairs, but no
solution can be satisfactory which takes no account of them.

See further as to this problem post, Art. 103,
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46 . If the intermolecular forces are finite, and have a

potential we have

dx dx *

And our formula leads to the conclusion that

A (17),

expressing now the fact that as before the distribution of

velocities is on an average the same for any molecule, in

whatever position it happens to be, not only with respect to

the external field, but also with respect to other molecules—but

that the number of molecules per unit of volume in a position

in which the whole potential is % + -v/r is on average

I see no reason why we should hesitate to accept this result, or

how we can avoid accepting it, except that Dr Watson (in the

work above referred to, pp. 70, 71) hesitates to accept it,

though I do not understand him to deny its validity. He
puts the case that, with finite intermolecular forces, a molecule

P may have a sphere of action, within which may be many
other molecules. Any individual molecule outside of the

sphere of action exerts on P a force Avhich is negligible. But

the infinite number of molecules outside of the sphere of action

may exert on P a sensible force. And he shows that this may
be included in the fixed centre forces. But he refrains from

drawing any conclusion for the molecules within the sphere of

action.

Boltzmann and Watsons generalisation,

47 . Our molecules regarded as elastic spheres have each

only three degrees of freedom, that namely of motion of trans-

lation.

Let us now attribute to our molecules the most general

form possible.

Let a molecule m be a material system, whose position and

state at any instant are defined by n generalised coordinates

and the corresponding momenta
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Lot p,n fco tho number of inoloeuloH of the kind m per unit

of volumo.

Lob Pmfifti ••• Hnlh P'l)

or shortly pmfd<lx • • • dpn >

(lonoto tho iminbor jxsr unit of volunus of mohuuiloH m for which

tho variiiblos lio botwoon tins limits

q, ... qv + dq^

<Jn ••• tjn+dqn

Jh ...fk + dp,

Pn Pn + dp„

or, as wo shall express it, are in tins states c.

Wo may express this in a cUllonsut way that the chance of

an m molecule being in tins state c is J'dqt . . . dp^.

It is assumed that tins moUscuUs is, so far as its own

internal forces are concesmed, 8t.abhs, 'i’hat is that if it bo now

in tho state c, and if no forctss exeispt its own iutesrnal forces

act upon it, it will after tho lapso of some bittus, greater or loss,

find itself in the state (c) again, <'XO(spt so far as tho coordinates

defining its position in space, which are included in qf-’qrn

are changod by its motion of translation. It is also assumed

that / will not bo altered by reversing the sign of p, ...p^

simultenoously. And therefore/ (wumot contain odd powers or

products of the p’s.

In the same region list there be atiobher sob of mole-

cules M, each having r degrees of freedom, whoso coonlinatos

and momenta are denoted respectively by ... Q,. and i*, ... iV-

And about those make tho same assumption !is above statod.

Let Pn be tho number of M molecules per unit of volumo.

Let Pu^iQl- Qrl\ Pr) dQ , ... dP„

or shortly FdQi
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denote the number per unit of volume of moloouIuH M for

which the same variablos lie between the limits

Qf - Qi + dQi \

Qr • • Qr "b dQf

l\...Pr + dPrJ

iC).

or, as wo may express it, are in the state 0.

48. Let {qi (JlnQi*- - Qr) bo a function of the coordinates

of two molecules m and ikf, such that when <j!> is positive there

is no mutual action between the two molecules.

Let US now make an assumption equivalent, with respect to

the molecules now under consideration, to condition A. Let

US assume namely that so long as <p is positive and
^J lu^gativii,

the two chances F and /arc independent. And th(3refore the

number per \mit of volume of pairs of molecules, one bc^longing

to the niB and the other to the Af 's, for which at atiy instant

the variables lie, for m within the limits c, and for M within

the limits C, is

PrnpM^yd^i • - • dpndQi . .

.

When
<l>

passes through 52oro the two molecules piiss into

their sphere of mutual action, and an encounter comnuuKUjs

between them. The chances F and / generally cease to be

independent.

It may bo the case that (p, having bocotno negatives, would

if the two molecules are not influenced from without, remain

negative for all time. The two molecules, that is, may, each

remaining stable, form a permanent union revolving rotmd

one another in a closed orbit. I shall not consider that case,

but assume that after a certain time r, (p will again pass

through zero and become positive. The encounter ceasoH when

<f>
again becomes zero. All those pairs of molecules for which

at a given instant <(> lies between zero and ^ dt, ^ being
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positive, will within the time dt after that instant commence,

and as I am now assuming, will in due time afterwards com-

plete, an encounter. The number^per unit of volume and time

of such encounters must therefore contain the factor
d<l>

dt
'

49. But the two molecules have between them only n -f r

degrees of freedom. We must therefore use
(f>

for one of the

generalised coordinates defining the position of the double

system.

Let us substitute ^ for Then all those pairs of mole-

cules, m and M, for which at any instant the variables other

than qn lie within the limits c and C respectively, and for

which at the same instant <j> lies between zero and~ dt, will

in the interval of time dt after that instant encounter one

another. The number of such encounters which commence in

time dt is therefore

PmPu^fdq-i. . . . dqn-idpj, ... dpndQi... dPr^ dt.

As a consequence of the encounter, after the time t the

variables will be found between the limits

for m, and

.... qi +dqi \

5 u—1 •
. q\i^i + dq n--1

,

Vi' — Pi + dpi
>

Pn .pn'+dpn /

e/.. • Qi + dQi
j

1

p/.. .Pr' + dP; J
1

(cO

.(CO

for M, and cj) between zero and — dt, and the encounter

ceases as cf) again passes through zero. The pair of molecules

pass out of their sphere of mutual action.

I



I

1il]
,
Me distribution oi" momMta, etc. 41

AccordiDg to oiir notation the number per unit of volume

of pairs of molecules, m and My for which the variables lie

between these limits c', C, with^ positive, is

Pmpu^'f’dqx ••• dpn'dQl ...dFr ^ dt.

Conversely if at the beginning of the time r the variables

were in the limits c', O',
<f>\

dt with reversed velocities,

they would at the end of the same time t be found within the

limits c, C with reversed velocities. We may call these reversed

encounters. The number of reversed encounters less the number

of direct encounters per unit of volume and time is

p^PuFfdq^ din-.d'p^:. d'PridQ^ ... dP/^ dt

PmPuFfd^l ... d^n—idpi... dpndQi ... dPr~^ dt.

60. It can now be proved (the system being conservative)

that

dqi ... dq'n-idpi dp^dQ,' ... dP;'^

= dqi.,. dqn^idp^ ... dpfid^^i ... dP

p

d<l>

dt *

For the accented variables g/, &c. are all functions of the un-

accented variables aiid of the time r. And as t is the same for

every system within the initial limits, we have

dq^'

rdS

where S is Hamilton’s Principal function for the motion in

question. Similarly

dS VdS
dq^
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Now writing for^ dt and for dt,

d^i • . . d(/n~i d<l)'dpi . . . dpn dQi • • . dl^r

= dqi ... d^n-id<f>'dQi . dQJ x dpi ... dpn'dPy... dP/

” d^i ... d^

n

—id^ d^i ... di^f d(ji ... d^n^id^d^i ... d(^r

* Iqi dqt dQr
’

whore the last factor denotes the functional doterminant

dp/ dp/ dp/

d^a d<^
’

dp/

and since

, dS dp/ dh^
,

df// ’ dy, d<pdq/
’ ' *''

the functional doterminant may bo written

d»/S d“*S d»*V

dffid*// dq/dq^ dqi'd(f>’

d’if?

dqidq/

In the same way

d^i ... dqn-id^dpi ... dpndQi ... dP,.

" dqi ... d^rt—id<^d^j^i ... d^i. x d^j ... d^ n^id(^ d(^i ... d^i*

dp, dp,x2±
dq/dq/’"’

and the functional doterminant has, but for its sign, the same

value as before. Hence the continued products of the differ-

entials are numerically equal, that is

dq/ ...dq'n-id<f>'dpi' ... dp/dQ/ ... diV

= dqi ... d<j[n-id^dpi ... dpndy, ... dPf

i

I

i

\

(18 ).
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and iheroforo tho oxcohh of fhe rovorao ovtir the direct encounUTH

per unit of volume and time is

PMpr,^ {F'f - Ff) d<l, . . . dqn~^d<l>dp, . . . dpn XdQ,... dPr,

or

= PMp.n dQ, . . . dPrHKF'f - Ff) dqy . . . dqn,4<t>dih • • :

and ia zero if in all caaos Ff « Ff.

dtf'

A corresponding e(|uation holds for Hen further for thin

proposition Watnon^H Kinetic Theory of (hme^ Bocond edition,

Arts. 8, 10, 12, la

61 . As this property is true ibr all values of J^and /with

the corresponding F and/', wo boo that if Ff'^ /fin all easim

where a pair of niolecukm can by encovmter pass out of the

clasBos Ff f into the chwHCH F\ /' respoctively, or vice versa,

wo have a miffhcient condition for stationary motion.

The II theorem of Art. 88 cati easily l)e adapted to j)rove

that it is also a necessary condition. Further wts may take

for solution of the etjuation Ff » Ff,

whore T is the kinetic energy of the molecuks M, and that of

m\ and if T, T can be reduced to the sum of stiuares of the

velocities, we get a rcsvdt analogous to that obtained for elastic

spheres in Art, 48, namely that, m a conscHpience of cotulitioti

A, the moan kinetic energy is the sames for each degree of

freedom.

62 . It is necessary hero to point out what further

assumptions, besides condition A, we have made concerning

our molecules in the above demonstration. Wo expressly

assumed in Art. 47, that each molecule left to itself is stable,

that is, that so far as the mutual forces between its parts are

ooncomed, the coordinates and momenta, whatever values they

have at this instant, will or may, at some future time paas
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simultaneously through the same values or infinitely near to

them, the coordinates x, y, z defining the position in space of

the centre of inertia being excepted. We also expressly assumed

that if two molecules pass into an encounter, they pass out of

it again, that is do not form a permanent union. We have

further assumed tacitly that each molecule is stable, not only

under the influence of its own internal forces, but also under

the influence of the new forces which may be developed during

its encounter with another molecule. Suppose for instance for

an m molecule /= 6“^^ where 5 is a quadratic function of the

momenta with coefficient functions of ... A
necessary condition of stability is then that s shall be positive

for all possible values of the _p’s. And that requires that the

determinant of the coefficients in 5, which we will call d, and all

its coaxial minors, shall be positive. See Appendix (g).

If'

then

s = + bi2PiP2 +

Cti 6i2 ^13

hi2 0/2 boz

Similarly in order that an M molecule shall be stable if left

to itself, we have if

and S= + &c.,

D =
A.I £i2 -Sis

^12 -^2 -^23 y

and D must be positive. And so long as the two molecules

do not influence each other, the condition is that Dd shall be

positive, which is necessarily true if it is true for d and D
separately. But when the two molecules are within the sphere

of their mutual action, the corresponding criterion of stability

is that $+ S shall be positive whatever values the velocities may
have. If A be the determinant of the coefficients in S +
A, and all its coaxial minors must be positive.
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But if we form the determinant A for the coefficients in

5 + >8^, it will generally during an encounter or when ^<0
contain constituents of the form pP. The condition may fail

for A, although it held when </> > 0 for d and D separately.

So that the two molecules, though stable separately, may be

unstable together. The encounter may be the death of the

molecule.

Note on the E Theorem, Art. 42.

The H Theorem proves strictly that, assuming the independence of

dE
the chances (Art. 17), is generally negative. It is claimed for it, as a

physical theorem, that the diminution ofE is analogous to the increase of
Entropy in irreversible processes. To make that analogy complete, the

chance of being positive ought to diminish indefinitely as time in-

creases. I will state the difficulties that this view presents to me, without
saying that they are insuperable.

A finite number of molecules in a finite space are set in motion at an
initial epoch at random, in the manner described in Art. 41, and then left

for infinite time, undisturbed from without, under conservative forces.

dE
Initially is almost certainly negative. After time t the coordinates

and momenta of every molecule are determinate functions of t and of all

the initial coordinates and momenta. If <7, G' be two successive states of
the system, each in its turn a consequence of the same initial state, in

what sense is G less probable than O' ? It may be that the initial state,

formed as we have formed it, is less likely to be G than G'. But the
chance of state G at time t is not proportional to the chance of the initial

state being G. It is then improbable that the initial state should be one

in which is positive. It is not proved to be improbable that it should

dE
be one, a necessary consequence of which is that will be positive at

time t.

Again, the continued independence of the chances, if conceded,

attributes to every subsequent state of the system the same properties

as the initial state has, which would be rmht if the system were con-

tinually receiving external disturbances. Gan it be conceded for the
isolated system ? Let S be the Principal function, sc, cd type coordinates

d^ djS
of two molecules at time t. If os— sd nearly, are the momenta

correlated or independent? I think it can be proved that they are

dF
correlated. If so, the formula 8 of Art. 37, expressing

,
is inexact.

dE
And the theorem fails to prove negative, except when the factors

— Ff great, that is when E deviates widely from its normal value,



CHAPTEE IV.

CORRELATION OF VELOCITIES. FINITE FORCES.

53. I PROPOSE to prove in this and the next chapter that

in a system consisting of molecules of finite dimensions in

stationary motion, it is not true for molecules very near to one

another, that the chances of their having velocities between

assigned limits are independent, as condition A assumes : but
^

on the contrary if the forces be repulsive, they tend to
i

move on average in the same direction
;
and therefore that in

|
dealing with their encounters, or (in the case of rigid bodies) 1

their collisions, we cannot legitimately base our conclusions on

condition A, except in the limiting case when the density

—

i.e. the ratio which the aggregate volume of all the molecules
,

in unit of volume bears to unit of volume,—is infinitely small, |

though conclusions based on condition A are approximately
*

accurate for gases under ordinary conditions. I

In the present chapter I shall deal only with the case of ^

finite intermolecular forces. >:

Let m, &c. be the masses of a number of molecules in
i

stationary motion. Let x, y, z denote the coordinates of m, I

y\ £ those of any other molecule as m'. Let r be the ^

distance from m to m'. Let / be a function of r which is
^

everywhere positive, finite and continuous, which is of negative

degree except for very small values of r, and such that I

I
^iTT^fdr is finite. !

Jo

Then for any m, 2/ is the surri of the values of /, referred

to the position of 'fti as centre, for all the other molecules;
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and if p be the number of molecules per unit of volume,

2/=
j

4iTrr^pfdr. Also Sr^has corresponding meaning.

Extension of Clausius' Theorem,

54. We can now put the Clausian equation in a modified

form as follows,

m.

for the function within brackets has a determinate value at

every instant, and cannot on average increase or diminish with

the time, the motion being stationary.

Again for the same reason,

Here the first 2 denotes that every molecule successively is

to play the part of m, and the second 2 includes all the

molecules except m each with its own x\ y\ z\ and each with

its ownf referred to the position of m for the time being.

Subtracting I. from II. we obtain

{co - «) + 2m^ S/ iy' - y) + 2m^ 2/ (/

-

z)

+ Smg2 (a>-- «=)f+ Jmf 2 (y'- S)f
^

(III).

df_^^
dt
^ dr dfAgain,
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And if A, jx, v be the direction cosines of mm\ or r, drawn from

m to x' — X &c., and

dr ^ dx' dy' ^
dt^ dt

^ ^ dt

/ dx dy
.

dz\

and the last line of III. becomes

dt)
^^dff^dx dy dz\ f dx' dy' i

^^dffdx dy dzy

That is, since \/jb==Xv = yv 0 on average, and

X2=/X2=l;2=r|

on average, the last line of III. becomes,

+© +©

}

Again,
Z dr

1 r
: —

g j
4:7rr^pr

df
dr

dr

i 4i7rr^pf +J
^Trr’^pfdr + Trr^ dr

= 2/ by the conditions for /, if^ = 0.^

Again, m d^x

d¥'’
X, &c.

if X, F, Z be the components of all the forces, whether external

or intermolecular, atjting on m.

* If the molecules be scattered uniformly ^=0 on average. If not
ar

uniformly, it will be generally negative, becp.use we take a molecule for centre,

and there are more molecules where p is greater. But (see Art. 106) it will be

small. If negative it helps my present argument, but I shall treat it as zero.
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<Px

FINITE FOHOBS. 49

Therefore 2/a;' - a; = X2/ (ai - x),

m dhj

dP
^fy'-y=Ytf(y'-y),

d^z ^ - j- Tz^Z1f{z'-z).

Making these substitutions, and arranging the terms, we find

di
m^ {of — w)-^ &c.

dec'

dt (!)
,dt

= -2/Sto

„ ^j-fdxdx'
,
dy dy'

,
dz dz'\

+ .

+ -x) + lYtfiy' -y) + - z)

df A dx
,

eZy
,

'^a+'‘S(+"5(

+

Wr^|(; ^ (te'
,

dy'
,

rf/

Tliat is -r n- ^
+ :SZ2/(4r' - a;) + F2/(y' - y) H- ::*Z2'/(F - z)

dr dt

^0 (IV).

66. Now if there are no intermolocular forces,

XX2fictf-x) + XF2/(y' -y) + %ZYif{Y-z)

is for an infinite system negligible, and e<iuation IV. is satisfied,

whatever/ may be, by making

±.^1 4. n
dt ~dt^ dt di di dt

™ ’

cte' dy' dAdA
dt)'

0
,

on average for each value of r, and therefore for each value

of /. This expresses condition A, which thus appears as a

consequence of there being no intormolocular forces.
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66. But if there are intermolecular forces, we shall find

that condition A cannot exist.

In the limiting case when the encounters are binary, or no

molecule is within the sphere of action of more than one other

molecule at the same time, we have

X%f{x' - + FS/(2/' -y)^ F2/(/ ~ Rrf.

In the general case consider a spherical shell of radii

r ... r + dr described about m. Let R be the intermolecular

force between m and a molecule wf within the shell, 6 the angle

made with x by the line mm drawn from m to m'. Let be

the value of / for the radius r, and let 2^ denote summation

for all molecules m' within the shell. Then if X, &c. relate

only to the forces exerted on m by molecules within the shell,

X^f{x' ~ = -frRr (2r cos d)^

the mean value of which, if the molecules be distributed through

the shell at haphazard, is —

Again X includes, not only the forces acting on m due to

the molecules in the shell r ... r4- dr, but also all other inter-

molecular forces acting on m, e.g. forces due to molecules

within the shell / ...r' + dr', which forces we will denote by

jR'. The part of X%f{x' — x) due to these forces is

—frR'rXr cos dSr' COS 9',

where 6' corresponds to 9 above. If we assume

2r cos 9'Er' cos 0' = 0 (1),

on average, we shall have

XXf(x'^x)==-^ilrRrf,

But whether X'%f{x' — x) be equal to - ^^rR^f ox not, it is

nevertheless negative, and not zero. What has been proved

for X is equally true for F and for Z. So that

X2/(^' -x)^ T%f{y' - y) -f F2/(/ - z)

is in any case negative, and in the limiting case of binary

encounters, or wherever we can assume (1), is equal to - ^Rrf.

Since, as we have seen, in equation IV. the term

%X%f{x ~ 5?) + &c.

is negative and not zero, it follows that the sum of the remaining

two terms, that is,
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^.(dxdaf
,
dy dn/

^
dzdtif\

^'^^f\M~m^dlTt^dtdV

sc df f. dw
,

dy
,

dz\ f. dx'
,

dy'
,

dz'\
+ ^m:^r£ (X +y, £+ v (x + v

^
J

.

is positive and not zero. But this is inconsistent with condition

A. It follows that we must discard condition A when inter-

molecular forces exist.

67. First solution of equation IV. Let for any value of r

dm' dy^ dy' dz ^ dz'

\dt dt dt dt dt (it,

47rr®p(;6 on average,

where
(f>

is a function of r such that 47rr^^, and therefore also

4i7rr^(f>ff vanishes at either limit, when r is zero or infinite. Also

dm d'u'
assume all terms of the form , &c. to be zero on average.

Then as in Art. 54,

c df dec
,

dy
,

dz

: |•2<j^>r ^ ,
because ^ ^ ^

* J J
iirr^pcf}^ rfr

! —J
47rr^p<f>/dr —

^ J
and using this in IV. wo find

SZ2/ (®' - ®) + &c. - ^^fdr - 0,

which is satisfied by assuming for every r

{JT (m' — ^) -I- F (y' — y) -f -2^ (z «—
<0)} »

1

4irT^p

J
4i7rr^p<pdr = — J

47rr**p^ dr,

whence 47rr^p(f>dr = 2 Rr,

in all cases in which we can assume (1).

Second solution of equation IV. Since f is arbitrary we

may equate separately to zero the term in IV. involving r
,
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and the sum of the two terms involving f. That is, we make

for each value of r.

dy dz'

and m dx ^ dx' dy ^ dy' y^ di tt'^ dl ~dt

+ Z2, (x' - ^) + FS, iy'
-

2/) + = 0 . . .(IV b),

in which X includes the intermolecular forces acting on m due

to molecules at whatever distance, but x' — x, &c. relate to a

particular distance r.

The result (IV b) and the first solution show that the

velocities of m' molecules distant r from m are correlated

with that of m, or

m (dx^ dxy dy y. dy' dz y dz'
- + -J2 > 0, on average.M "" dt ' dt dt ’ dt dt

And the correlation is a function of r.

In this solution 4i7rr^p(j>, and in the former one — ^AiTrr^p ^ ,

is a determinate part of the Virial of the intermolecular forces

acting on m, though not necessarily equal to i2r, except in

cases where (1) can be assumed.

When r exceeds the “ radius of action ” of the molecule m,

and so iJ = 0, X nevertheless includes the x force due to

molecules distant r' from m, for which iJ' is not zero. But

ultimately as r increases, Sy cos 6 Xr' cos ^' = 0 for all values of

r' for which R is sensible. So that as r increases,

dx^ dx' 0 .m^ Zr 4- &c. becomes in any case zero.

But the correlation may possibly retain a sensible value at

distances from m greater than its radius of action.

Equation (IV a) expresses that although the velocity of m
is correlated with that of m', yet it is not on average correlated

with the velocity of m' resolved in direction mm'^ that is not

correlated with ^^ ^^
simplest, though not perhaps the best, solution is the following.
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If mP represent in magnitude and direction the velocity of

m, and if it be taken for polar axis of a sphere of radius r

described about m as centre, then the average motion of

molecules on the surface of that sphere is on the meridian

towards P, and proportional to the sine of tho colatitudo.

68 . If the force R bo attractive instead of being repulHivo,

doo dfCCf

di dt
^ negative instead of positive. Tho volocitioB

of m and m' may be said in this case to bo contrarelated. If

there be two sots of molecules, A and B, and every A repels

every other A, every B repels every other P, but A and B
attract each other, the system will tend to form at every point

two streams, tho A's moving in one direction, and the P’s in tho

opposite, which wo may compare,

‘ si parva licet componoro magnis,^

with the mutually attracting and repelling electricities supposed

to constitute an electric current.

It should bo noted that for any molecule 1

dw dm'

dt dt

the summation including all values of r, is if (1) bo Jissunied

equal to tho Virial, taken as positive when tho forces ajro re-

pulsive, of tho interrnolecular forces acting on m. (Sec Art. 86.)

I have treated
dm dm'

dt dt
as zero in tho absence of ititormolecular

forces. Strictly, n the number of moloculos in tho system being

finite, and tho centre of inertia at rest, it xnust bo negative, but

it may be neglected when n is groat.

69 . I have thus proved that if there bo finite intermolocular

forces, condition A cannot prevail, and

^^ jL §1—
dt dt di M dt dt
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has on average a finite value, a function of r, and is positive if

the forces are repulsive. The investigation does not apply to

elastic spheres, in which the intormolecular forces are infinite

during collision. I shall therefore devote the two following

chapters to proving the same thing for eciual elastic spheres by
an independent method. It will be, I wsgret to say, a much
moi'c laborious method. If however the reader is now satisfied

that I have established my case for finite intermolecular forces,

he will have little difficulty in provisionally taking for granted

that the same thing can by some means or other bo established

for the limiting case of elastic spheres, in which the forces

become infinite for very small values of r. And omitting

Chapter v. proceed at once to Chapter vi.



CHAPTER V.

COIUIELATION OF VELOCITIES. ELASTIC SPHERES.

60. I PEOPOSE ill this chapter to prove for elastic spheres a

proposition corresponding to that proved in the last chapter for

molecules between which finite forces act. The elastic spheres

shall be each of unit mass and diameter o. The same pro-

position for spheres of uneciual inassos or diameters is much
more laborious, and when proved does not bring us much
nearer to any probable form of molecule.

Equal Elastio Spheres,

Assume the chance that a group of n spheres shall simul-

taneously have component velocities

... (Xi + dui \

A A + dA [
^he first

7i ••• + dyi

0,1 ... On + docn

Sn . . • Sn + dSn

7n ... Jn-i^dyn

to be 0 . . . dyn .

If we assume condition A, we virtually assume that
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Now it will be foimd that when thu dia»iotca*H aro fiiiito

the motion is not ntationary when

+ /3
'^

4"

but becomcH ntationary when

Q 2 (a« 4- /9« -f 7^) + 226 (aa' + 130
'

+ 77').

Hero a, a\ &c., arc‘ compoiumt vedoaitioH at tlu'. inntant (U)n-.

Hulcrod of iuiy pair of Kphon‘H,a!Hl 6 in a function of tfiu diBtanco

between them at that inntant which, cx(H»pt for very Hinall

dintancoH, in evaneHcumt. I admit of courHc that given con-

dition A always existing, the distribution of velocities among
the sphoreH denoted by ^ is not disturbed by collisions.

That has been proved many times. Hut the point is that

condition A itself cannot (uml.intie to c^xist when collisions

take place. In order that it may eoutinue to c^xist, it is

necessary that the system c(>ntinually iHauuving disturb-

ances, or else that tlu^ diameH^rs of the spheres shall be

infinitely small, so that no (jollisions occnir.

Ihfmitiom,

61 . Lot P be any point, r the distancH^ of any other point

from 1\ Let / be a function of r satisfying tluj following con-

ditions, namely,

( 1 ) / is etpial to unity at all points within a small sphere

of radius a described about P as t!^•ntr(^

(2) /is finite, positive ami (nintinuous eviujwhere.

(JI) / is of negative th^gree at all points outside ef the

sphoro and Hucdi that l.lu! Htirum iUtuot.t)d by If, or I ^Trt^fdr,
J U

is ultimately convergent, but contains no high powera of

We may take ft>r * a* tlu^ radius of a s|)here which on
average contains one molecuhn

2^/ 27/
' sy I f*** summation in-

cluding all the molecules of tht^ system, and / liaving for each

molecule the value proper Hi its distatice from P, Then
are continuous functions of y, z, the coordinates of IK

Let now ^ ® , f)

#
P
ft
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Let
f
fd.xdydzary[§ + g) ,

in which (f + g)
is the

value of that function at a given instant within the element of

volume dxdydzj ay is the value of the product ay for the

molecule (if any) which is within that element, or the sum of

those products for all molecules within the element if there be

more than one, and the integration includes all space. Then,

for any element of volume, ay changes from instant to instant

by the passage of molecules into or out of the element.

There are two analogous functions, namely,

and also three others of the form

It will be sufficient in this chapter to deal with M^z, and we
may for the present drop the suffix, and write M for M^z.

Summary of the Argument

62. It is necessary first to treat of the case in which the

molecules, though possessing finite mass, are of infinitely small

dimensions, so that collisions between them will not occur.

That beirig the case, the system will be in stationary motion if

the velocities are .distributed according to Maxwell’s law, Q
being a sum of squares only. This we may admit whatever

views we may hold as to the possibility of any other law. I

shall assume Maxwell’s distribution to exist. It follows from

Q being a sum of squares only, that the fact of any molecule, or

any group of molecules having any given velocities, affords, if

the whole number of molecules be infinite, no presumption

whatever with regard to the velocities of any other molecules.



A System of Mat&rial Points.

63. The chance that the tn(tloculoH nhall at any instant

have for their component velooitioH in to, oLt ... (Hi+ dai, &c., is

Ae~'^‘^dai ... don, where il is a constant and in the systoni now
considered

Q » dj* + + &c.

But from Art. 61,

It conduces to simplicity to assume fn-^1, but, as will bo

seen, it in no way affects our conelusiotm. That being assumed.

On = f2/~ a,/, - Oa/a - &C.

Substituting this value for a„ in Q, we obtain

<2 “ r (S/)“ + (1 +/.») a,” + (1 +/.“) a./ + &e.

-2/aa.p/-2/;«,fS/-&c.

+ ^/i/aaiOa + y^if»aia» + &c.

If wo now integrate for a, ... oc,i_i successively with limits

± 00
, wo get the result next stated.

Let P bo the determinant of the coofficiontH in Q, each of

the coefficients of products being divided by 2, that is

Wo then find for this system the mean values of
j

, &c

In this system of material points 0, which gives rise to

equations A and B below. It is then proved that if, with the

same masses, thq spheres have finite <liameter c, so that collisions

occur,
,
which was zero, becomt«, if f*, &c. retain tho same

at

mean values as before, positive, and tho motion not stationary.

But tho motion must become stationary. Therefore in the

system of finite spheres f®, &c. cannot retain tho same moan
values as before. It follows that in this system Q in cannot

be the sum of squares of tho velocities only.

KINETIC TMEOEY OF OASES. [chap.
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1)

(2/)» -/tS/ -/«V-

-m /./. (I +/,*)...

59

Lofc Dp,j b(i tho minor formed by ojnibting the j>th row and

^th column. Similarly lot bo tho minor formed by

omitting rows p and r, and ooluttum q and a. Thou by into-

grating for On-t. Q ^ reduced to whonce f™"

Soo Appendix (g). AIho by integmting for Oa ... «»_i only, Q in

reduced to

A. A
i«ii IX iKn

Again wo find (hoc Appinidix {<j))

A; “ I +/;•* + .. /“»-! « HilHiO /„“

Diias

Dti = Dja = &0. =a i) a®

i.\

(19).

/

Wo have then for the chancct that «, aiui f Hhall lie within

assigned limits irrospectivo of tho values of «3 ...a„..i the

oxpros.sion Ae”'‘^'daidf in which

Q' » qoLi^
- 2pa,f + rf

,

, , (ifY
and

We soo now that bho asBumptiou 1 has not afTocjted the

result, booauBO writing for /® dobs not alter g, or n
/tfc

64. Let now f bo tho value of that function at P the

origin, f its value at a neighbouring point P'. Thou at

d
P', e“**2' becomes «~W + ^

e-A«', And if f bo very small, this

is equal to ^~hQ ^ 2Apai9f).
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But if at r, f is not uo^^Iigiblo, wo inuHt uho instead of

a, yS, 7 the following functions, namely,

u — oL-^, v = 0 - 1
), w = 7 — whence a = u + f &c.,

and =
(j ( u + - 2j) u + ii + r^\

or Q' = qu^ + 2q —p^i + (q
— + f)

and lot €-*Q' = .^(af).

Then if 4> ('“ value of this fuiuitiou at P, (« f) its

value at P',

<t>i
(w f) - </> (“ f = (" I')-

Again, let
<;f> (?/) (iu bo the chance that at n shall lie

between u and 4- whatever f may bc‘, that is

^ (u) « [
(u f),

J —00

and the same chance at 1^' in

4>‘ («) =J f J Jiff i> (« f)•

^ if ^ (rf{)
*

I

if denotes differentiation with it, constant. Thertsforo

i>L («) - <l> (u)= 3f
J ^

<;f) (//, ji^ ^ (m f).

But
/.

becaiiBc <)!) vaniHlnjs at eithca* limit, Therefon^

(-a) - </) (w) = - 3fJ
*1
^

(jt (u

= Sf [ rff<jE. (a f ) 2/t (^/w + ).

J -SO

And this is proportional to
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if h!^h
a/y

a/y

whoiiCQ ('ll) ^ <f)(u)( I + ytih'iib^).

(!]

m
dt

66. Now with tho abovo dofinitioii of M we may write

iO, that iw

()...( A).///"!'* {(* + t) M + s)
the suinmatiou being for all the. elemontH of volume, each with

its own ay and ita own .

d
Now wo Hhall Hod that on avarago ^ ay iw of the opposite

sign to “f
,
and m of the satne sign with

ay. So that consists of two sarioH neither of which is ^ero,

but which are equal and opposite.

66 . Let UH tjonsider the plaiio of wm, and f as varying

in direction f as varying in direction w. Lot us first deal

with only. Conaidor the two infinite phaiea « » 0 and

z — ds^ and Hupposo for a moment conatant between them.

The number of moloculoH at or near the plane z..- dz for which

M, or a — lio.s between a and u + du ox<5ecd8 the correspond-

ing number at or near the plane a: . 0 by the quantity

dti2h'u ^ dz.
dz

That follows from Art. 64. To fix the ideas let w be positive.

Let us separate from this class of molecules those whose z

velocity is y, and suppose y negative. Lot us then call the

separated class the class (vty). Then the number of molecules

of the class (vjy) which pass through the plane a » ds per unit

of area and time exceeds the number of the same class whicli
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pass through the plane s = 0 per unit of area and time by the

quantity du2h'‘wy -^dz. And the number of mole-

cules of the class {uy) which enter S the space between the

planes per unit of time exceeds the number of the same class

which pass out of 8 per unit of time by

- e-V dud^2h'u^^

,

which is positive because uy is negative.

If SNdudy be the number of the class {uy) within 8, we have

dudy = — dudy2Kuy^^ (20 ).

But if uy be the mean value of uy for all the molecules within

8y u and y now taking all possible values,

Uy = JJ
Nuydudy

jjj
Ndudy^

and therefore

because

j^uy = J
fuy^ dudy

jjj
Ndudy,

^jjjfdudy = 0 on average,

= — A
jj

e~^’'^e~^'>'^2h'u^y‘diidy^ by (20)

2h dz *

I have assumed in this proposition that the space 8 within

which ^ is constant, is the continuous space between two

infinite parallel planes. That will not occur in fact. But it is

not essential to the argument that 8 should have that shape,

or that it should consist of one closed surface. The proposition

holds equally if 8 consists of all those elements of volume for
7 O

which at a given instant ^ has the same value. And it is true

(m average for each element of volume.
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67 . Again,
d —
dt'^=

d — d ^

Now a molecule moving within S with positive 7 moves

dt
from less to greater ^ being positive; if with negative

7, it moves from greater to less For all molecules moving

within S, ^ 7^ is positive and equal to 7^ , US be divided

into parallelepipeds of base dxdy and altitude PP'

d^dydz = jj ^p) dxdy,

and being the values of ^ at the upper and lower surfaces

of the parallelepiped. By the motion of all these molecules

7^ is increased.

But at the upper end where ^ is greater, molecules with

positive 7 pass out of the space, at the lower end they pass in.

For negative 7 the converse is the case. By these entries and

exits 7^ is therefore diminished at the rate (^p - ^p') dxdy,

or by the same quantity by which it is increased by the motion

of the molecules within S, On the whole therefore if ^ alone

vary

And
d — d — d

d —
=

dt^'^-

We have then from Art. 66,

d—__
dt “ 2hdz‘

Similarly, if ? only vary,

and therefore if f and ? both vary,

d
dt''~" 2h \dz

, 1 fd^ d^

2h [dz dx.
•(21 ),
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and (A) becomes

It follows that a7 must be on average positive,

, , ,
I

,
d^Y

and equal to
3^^ +J •

68. We must however consider the valu«‘ ot

more carefully thus

:

Let P, P' be two points on a sphere 8 whose coordinates

referred to the centre 0 are respectively w, y, z, and y, ~z, so

that PP' is an edge of the parallelopi])ed, whose base is dady

at X, y. Let be the values of f at P, P' respectively.

,{p

Then if /S be the volume of the sphere, and the mean value

of ^ within the sphere,

8 =JJ
dxdydz *

jj
dxd,y (f

the integration dxdydz being throughout the spaet* 8. lAit the

radius of 8 be ‘a ’ (Art. 61). Then w(' may tak(' y as equal to

fata
dz

Suppose a molecule at 0 vvhoHO volocitieB are oc, 7. The
dP

change with the time of 8 duo to the motion of that molecule

the motion of all external molocuIcH in 7svo on average*

Let now / be the value of / referred to P aa centra, Then

pp = ^ . And let /' be the value of / referred to F'

centre, so that fry= .

If
molecule at G

Theii due* to the motion of the

d /t t \

.

d
, a d d \ rdf df'\
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because on average ^S/=0 &c. The minus sign is here

required because / is referred to P, and therefore ^ has the

opposite sign to that which it would have if referred to G.

rni X • df zdf
That is, -f-

=— -f-

.

dz r dr

Now to form equation (B) we shall have to multiply by ocy.

And that will make the terms in a, /3 disappear, because

a^ay = a^ay = 0, on average and therefore on average

yKdz
And therefore

- si - “V
I?//

“S'(f-f )

the integration being over so much of the plane of ooy as is

within S, that is - a7 -

of ^ when r = a,
dr

By symmetry

lid/ df

^ '2/ a da
^

It follows from (A) and (B) that in stationary motion of

the medium of material points on average

(§+!) (C).

Case of Spheres with Finite Diameters,

69 . We now pass to the case in which our molecules,

instead of being material points incapable of colliding with each

other, become equal elastic spheres of finite diameter c. It will

be shown that as the result of their collisions with each other,

which in the system of material points was zero, becomes.

so loug at least as
j

,
&c. retain the same values as before.

B. 5
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positive, and the motion not stationaiy. It is worth while to

show first in a general way by the ai<I of a diagram how this

effect is produced by the collisions.

Let us take the plane of the paper for the piano of wz and

suppose f alone to vary in », ^
being at a given instant
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positive near a certain point. That being the case, there is at

the instant in question near that point a mean motion, or

stream, of the molecules in direction ^ increasing as z increases.

We may suppose this instantaneous stream to be positive for

positive values of negative for negative values of z. It is

indicated in the diagram by the long arrows.

Let us consider two kinds of collisions, (1) and (2), the

directions of motion of either sphere before and after collision

being shown by the small arrows. For simplicity these directions

before collision are here drawn parallel to os.

If we examine collision (1), we see that the molecule which

before collision was moving towards positive w is doHccted

upwards, i.e, towards the positive stream, and the molecule

which before collision was moving towards negative is deflected

towards the negative stream. In cither case the effect is to

increase the stream pro tanto.

If we examine collision (2) we sec that the reverse is the

case. The effect of the collision is to diminish the stream. But

now, being positive, there are more collisions of the kind

(1) than of the kind (2) per unit of volume and time. And
therefore collisions tend on the whole to increase the stream.

dM
For the same reason, it will bo found, they make ^ positive.

It is true that in a rare medium the effect hero indicated is

very small. But the question is only of its sign, not of its

magnitude.

70. Since every collision changes the direction of motion

of the colliding spheres, the expression in Art. (iO derived from

Xdz'^ dos) dt

contains, in addition to the result calculated in that article,

a new term derived from collisions which wo have now to

calculate.

5—2
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Let V be the half relative velocity of two molecules, A, v

its direction cosines before collision, X', yit',
p' after collision.

Let \V- Vic, pV= VI. The number of collisions per unit of

volume and time for given V is 27rc^pV. Hence, for the change

with the time of Va-Vz due to collisions with given V, we have

27rcVF.F^(^'-^),

the bar denoting mean values. We have now to find the

values of X'p' and Xv for all collisions, given V.

At the instant of collision let the centres of the two colliding

molecules he A, B; so that AB is the line of centres. Let BD
be the relative velocity. Or, if DE = BEy one molecule has

velocity DEy and the other BE, in addition to the velocity of

their common centre of inertia, whatever that may be. Let

the angle DBA =^0. If AO = BO, 0 is the point of contact.

Let BX, BZ be the directions of the axes of x and z, and let

the angle between the planes DBA and DBZ be
<f>,

and the

angle between the planes DBA and DBX be </>'.

Then, if x, y, z be the coordinates of A referred to 0
as origin, and if the direction DE be that of \, pu, v,

Q Q
z = — V 6 + — 1/2 sin 6 cos

<f>,

Q Q
ic = — X ~ cos 0 + 2

— ^^sin 0 COS

The complete definition of
(f>

shall be this :

—
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When the plane DBA
,
turning round DB, contains the axis

of z, <p = 0 for that position of BA which makes the least angle

with the axis of positive z. And (}>' has a corresponding defi-

nition for the axis of x (see Art. 72, post).

71. If foj to be the values of f and t at 0, then at A

f- fo = I (
- v cos d -

1
- Vi — sin d cos <p)

t - to = I
( - X cos d 4-Vr^X’ sin 0 cos 4>)

~

(23).

Then by the same reasoning as employed in Art. 67 the

number per unit of volume of pairs of molecules whoso com-

ponents of half relative velocity are

F,...F, + dF., F,... F,+ dF,„ F,... F, + dF,

is at A

- d V„dVydV>. {1+ih'Kf- f„l.
TT V TT

Here owing to the variation of f in z, V„ is involved asym-

metrically with respect to V„ and F^. Lot us suppose now V
constant, but the angles 0 and <j) to vary. The general mean

value of VxVz is of course zero. But the mean value of V„Vt,

given V, in the asymmetrical system is to bo found by integra-

ting the above expression according to 0 and
<f>,

and is not zero.

Let us denote the mean value of V^V^, or for all values

of 0 and cj), F being constant, by (F„Fb), the moan value of the

same function when V also varies being denoted by Va) Vz. We
have then, treating f alone as varying,

TTa riw fir

( FeF*) = -- -
I

2 sin d cos 0 d0
j
d<f}(l+ 4/t'Fa, (f - fo))

TT J 0 Jo

in which f has the value given in (23), and the general

means of functions of V„ and V^, or XF and vF, are taken

after integration according to 0 and <p. That is, writing F®/F
for X &c.
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( F»F^) = FrF, r 2 sin 6 cos 0 dO
J 0

+ i VJV,^ de pd<f> 2 sin 6 cos 0 4A'
|

-y cos 0

VF‘4- F“ . „
^ 2_1 tL sin 0 cos (/)F

Wc V:v:
3 V dz

-(24),

because the general mean value of VxVz> or XvV^, is zero.

We have thus proved that, on the average of all colliding

pairs of spheres, (Fa;TQ is before collision of the opposite

sign to ^ or This does not depend on the result of

collision. It is therefore true if, instead of being elastic spheres,

the molecules be centres of force, or whatever be their form.

72. We have next to calculate the mean value for all

collisions of XV, or the value of Xv after collision. This will

depend on the form of the molecule, and we shall now deal only

with elastic spheres. It will be found that X'v is of the same

sign with (I + g).

We use the same notation as before. When the plane DBA
turns round DB until it contains the axis of z, let J./, which

are on opposite sides of DB, be the two positions in which that

plane is cut by the circle which A describes. Let A^ be nearer

to the positive axis of z than J./. Then, for A^y ^ = 0; for

Azy <^ = TT. Similarly, when the plane turning round DB con-

tains the axis of oo, A^^, A^ are the two positions of A in that

plane, and, if Axhe nearer than “to the positive axis of = 0

for Axy ^' = TT for A^-

Let € be the angle between the plane of DB and z and the

plane of DB and x, so that =
(f)
— e,

(f>
=<!>' + €, It will be

seen that, if Xv is negative, cos e is positive
;
if Xv is positive,
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COS e is negative. In either case

— \V . /A

cose= , - , —
,

Hine=a
,

....J. -i]

Vl - Vl - v" Vl-vVl -!/•

we have then, to find X' and v,

j,' =a _ V cos 2^+ Vl — V* sin 2$ cos <^, |

X'= — X cos 20 H- sin 2d COB <^' j

Whence, substituting F*' for X'F, and F,' for v'F, wo derive

the two symmetrical systems

F; = - F, cos 20 + VV7Tv7 sin 20 cos
'

V V
rr ( tr i

F,' = -. F, cos 20 ^ sin 20 cos ^

...(26),

F,' « ^ F, cos 20 Hin 20 cos f

Fgj' =a - Fa, COB 20 4“ Vr/ 4- F/ «in 20 cos j

The term involving Bin€ will disappoar in the mibHcuiuont inte-

gration, and is omitted. The above systems hold for all valium

of F* and F,.

73. Wo now find that for given F, taking into considera-

tion only the variation of f, or “

,

(F*'F;) - i ^de rd<f> 2 sin 0 cos 0(1 + 4A'F„f- f„)F„'F/.
irJo Jo

But with the above values of X', v', or

ri" . . _ . -

r/ V/
F ’ T ’

[ d0 f d<f> 2 sin 0 cos dF/F/ = 0,
Jo Jo

as is easily soon. Thoroforo

( F„' F;) = ~ r d<l> 2 sin 0 cos 0W F„f - fo F/ F*'
'TTJo ^0

= - 4/t'c [* dd f deb sin 0 cos dF*
TT Jo Jo

^ cos 0 + + Zv* ain e cos4 F„' F,'
,

X
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by (23). In this expression we have to substitute from (26)

the values of and and integrate according to 6 and

To effect the integration according to we reject odd

vr
powers of <)?>, and for cos^ (/> write ^ . We have then

( F*'F/)= ^ 2 4sh'c j^de j"d4> sin (9 cos 0 F*

( V v'P 2T‘^2 \

X cos 0 -f — — -- sin 6 cos (jb I Vgf F/

= ^^ 4/i'c 1” d(t> sin 0 cos OV^FGH,

( F, VF^^- F“ 1

where i'= j- :j^cos ^ sin ^ cos <^1,

(? = (_ F, cos 2^ + VFTTP^sin 2^ cos (^),

(-H={ — F-cos 29
F.F,

VF.^ + F?
sin 26 cos 0).

or (F/F/) = “ sin 9 cos^ 9 cos^ 20 d0

+^ ^ J
sin 0 cos*^ 0 sin^ 20 d0

yaya
+ ~ 4fA'c —

^ j
sin^ 0 cos 0 sin 20 cos 20 c?0

sin® 0 cos 0 sin 20cos20d0

- _ Aiv TJo sin 6 cos’ 0 cos’ 26 d6

Jt f’F’ ri’^

+g 4A'c I sin ^ cos’ ^ sin’ 26 d6

—^ Wc F^’F^ sin’ 6 cos 6 sin 26 cos 26 d6

+ ^4A'c^„F */:
sin® 0 cos 0 sin 20 cos 20 d9
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+ -=A 4,h'c i I sin® d cos d sin 26 cos 26 dd
dz F ^ Jo

d^ ^,,V:V: + d^ 2- ^ 4,h'o~ dz^"^ V
4. 4AV

3.5.7 ^dz^'^U.S.r
F/F,

but
Vf 1 VJ‘V’‘ 1

F® 3’ V, 3.5’

or F/F=5.^F®F/F •

Hence the expression becomes

f^?...„F/F,®-ll + 12-4 + 10

dz ^ V 3.5.7

1 d^.,, rjvj‘= s—T • :r4ikc - .

Z,b dz V

By symmetry if we treat ^ as varying instead of we

obtain the expression

1 dt

^ .0 dx V

and therefore, given F,

And therefore comparing this with (24)

( r.'FO - ( F.F.) -««™ (I + jLJ (I + 1) (27).

74. To find the rate of change with the time of FajF^

given F, we multiply the last expression by 27rc®pF (F being

the half relative velocity), that is by the number of collisions

which take place with given F per unit of volume and time.

0
Let us denote the change due to collisions by ^

.

ot

The result is, given F,

|(F.F.) . 8»Wp (i + ji^) vjv; (I + 1)
.
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And then we introduce the factor

IWlh
dVdVydV,,

and integrate for all values of V^, V^, F* and so we obtain

a

dt

75. This being the value of ^ Vx^zy what is the value
ov

of|(«7)?

If Uocy Uy, TJz be the components of the common velocity of

the two spheres, a, /9, 7 the velocities of one, a', yS', 7' those of

the other.

a=TJx+ Vx, if 1

^^Tly+Vy, 111

7=f/. + F„ 111

Therefore ay + ay = 2(?7.f7,+ F,F,).

Hence since TJxy Uy, Ug do not vary by collision,

|(«7 + «V) = 2|f:f; (28).

It follows that on average of all collisions

and therefore on average

76. We have next to consider the change in the term

+ due to the variation of a, or 7 by collisions.

As before let us treat f only as varying. Let us use the

construction of Art. 68 . Consider two spheres in collision
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thoir point of contact boing at 0 tho ooutro of the a fiph<(ro.

The g ordinates of thoir contros aro

I
(— 1/ COB ^ + V 1 — v® sin 6 cos

and (— V cos 6 I — P^BUlffcOH (p).

To find tho value of g- due to the collision, lot ub refer/
to tho point P. Its value at tho point of contact being /,

its value at tho contros of the two spheres rospoctivoly is

/+ 1 (— V COB 0 H- ^/l. — sin 0 cob

and il/— 2
(»- 1/ COB 0 + V l — Bin 0 COB

with corresponding terms in and ^ which will diHappear

on integration.

Now for the first sj)hore a is increased by tho collision by

Vm foJt’ the secoiul it is diminished by the same (piantity.

Therefore as the result of this coUision

= 9 - 1^0 %ir «' c«H e + VI- »»« Bin 6 cob ij>){ F*'- F„).

For tho minuB sign hero intntduocsd boo Art. 68.

Substitute for F/ — V„ its value from (26), multiply by

2 sin 6 COB 6, and intograte according to 6 and That gives

^-\o^£v £d<f, 2 Bin B cos BVQ,

P « {- 1/ COB 0 + Vl -- r®* sin 0 cos <p]^where

\p
" X 2 COB® 6 — sin W cob 6^

.

That is

Now multiply by 27ro*pF, tho number of collisions given F
per unit of volume and time. That gives

3f 16
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sM„iy

»nd !//&%({,

—

= _ Y Y 1 1 §f ju

where the integrations are throughout the section of the ‘ a
’

sphere made by the plane of xt/, S is the volume of the a sphere,

~^ is the value ^ when r = a.

But

as in -Art. 68, therefore

~ ^ ™ ir&pV p" ^ ^

dtda 16

2

/a SI-

Similarly ttc^oV V A 1 ^

and
S

+ ^1^ _82 1 Id/
dt ^ dx) IB P i/ a da *

Ihis expresses the change of ~ + duo to collision between

two spheres. Let a, <y b(! the velocities of one of the two
colliding spheres, d, 0, / those of the other.

'

, , d (d^
,
df

Then
dM
dt

contains the two

8,
“'>'8('

da;/

But a ==

7 =
as in Art. 76.

4z duo)

7'=t/;-n,

Therefore (av + a'/) F, = 2 F„“ F," on average,

because ^xUxVxVt = 0 on average.

Jl .11
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Thoroforo for each sphere separately

ay
dt dirj

32 .rnirildf
j g

7rc> V/ F,* - on average

aV » U:U,» + F«‘F.« + rJ/F.* + 17,‘F/

= 4F^^F/ cm avorago.

Ir^

becauBO

Wo have thon on avorage, roinoinboring Art (iB (C),

0 fd^
.

d!f\ 4 , 1
.

d^y
dt \dz ' Sic )

~
If) ^ 2/t ( dy

*
5®)

Adding this to Ci, wo find for the term in duo to collisions,
dM
dt

dM
dt

''

I «>///«»-)• 4 (§+ a)’ <'=•>

Wo interpret this as follows. As the result of collisions,

molecules moving in a given direction, as that of a:, are on

average deflected towards that side where the average motion

of the molecules, that is the stream, is for the time being in w.

And so collisions tend to increase the stream. Compare Art. (67).

77. Now referring to equation (A), we see that
,
which

in the medium of material points was zero, and so the motion

stationary, has, when the spheres havo finite diameter, become

positive, namely

djM

di

if-l

divj

1
%h \dz "^dw]

2.1 [didt
+ g7rop

2^
.(D),

f

i

I I

«#'-

i

I

I

I

11

of which tho first two tome are together zero, as in (A), and the

third is positive. Therefore if in tho system of spheres of finite
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diameter have the same values as in the system of

material points, is positive.

But in stationary motion must be zero. Therefore in

stationary motion of the system of finite sphere, (f

)

&c.,

cannot have the same mean values which they have in the

system of material points.

78. It might be suggested that the explanation of the

difficulty consists in the fact that when the molecules have

finite diameters the quantity of momentum transferred across

any plane per unit of area and time is increased in a certain

ratio, 1:1+4^, where, in the case of elastic spheres, k = |7rc®p.

But this increases both terms in (A) in the same ratio, and

therefore, so far as this property is concerned, remains

zero. This efiect arises from the usual convention concerning

elastic bodies, according to which there is on every collision

an instantaneous transfer of momentum through a certain space.

It has nothing to do with the change of direction of the relative

velocity, which also occurs on collision, and which we now have

considered. The first effect would take place in precisely the

same way, if after every collision the direction of the relative

velocity were restored by Maxwell’s corps of demons to what it

was before collision.



CHAPTEK VI.

COBEELATION OF VELOCITIES. ELASTIC SPHEllES.

79. The solution of the problem of the last chapter is

this. In the system of spheres of finite diameter | has become

? + (l + i)’ (£ + £)’ + (& + $)’
That gives by arranging the terms in (D)

dM
dt -///«»* I

«7 *(§+§)

+^2 ,
1

LUJ d

J

dz

2/fc \dz dx)

dx) J 2A ^dx)

We may assume that + is not altered by the

substitution of f for f, or ) = 0.
dt \ dz dx J

The first two terms of this equation are together ^lero

by (A) Art. 66. The remaining two terms can be made ^ero by
suitably choosing the ratio of the means

(
4f:+<v

: rS.iv
dz dx\,dz ^ dx )

We have, namely, writing tc for ^Trc^p,

whence
|v dz dx) \ dz dx)

J \ dz dx) ’

dx) 1 — dx) \dz dx)

if y, /c“ &c. are negligible.
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80. Instead of using ^ fjj
, or

the analogous terms or Myz, we may make use of

=JJJ
dxdydzce^

,

or the analogous terms Myy or M^zy and we obtain the same

result. I have set out the mathematical work in the Appendix

by reference to Arts. 66, 68. We may therefore now use the

complete expression for M, namely

M= Iffd^
cZ. {a=g + /3»^ + y f

-

and we then reduce to zero by making

\da}J l^/c\da^J ' [dyj l--/c[dyj

Now so long as the distribution of velocities is represented

by e”^^, and Q is the sum of squares of the velocities, &c. and

/^\2
^^st have either the same or less values than those

found by the method of Art. 63, for material points. In

stationary motion therefore in the system of finite spheres Q
cannot be the sum of squares only. It must contain products

of the form 6 (aa -f yS/3' 4- 77')- question now is, what
must be the form of the coefficients 6, or as I shall call them

coefficients of correlation^ in order that the ratio

may have the required value.

-m
81. By way of illustration let us suppose n molecules within

a sphere of radius i?, their velocities being distributed according

to Maxwell’s law where Q is the sum of squares of the
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velocities, and let us impart to each molecule, in addition to the

velocity which it has in that motion, the small velocity in m.

This being done, the chance that one of thos(5 molecules

shall have velocity represented by lines drawn fi’oin the origin

to some point or other within an element of volume rKi, whose

centre is distant p from the origin in direction making the angle

'yjr with tlie axis of oo, is

(1 4- 2?ipX' cos dil

The chance that another .molecule shall have velocity repre-
,

sented by lines drawn from the origin to some point or other

with an element of volume dSl' distant q from the origin, in

direction making the angle </> with p, is

dfl' {1 + 2hqX' (cos cos Bin i|r sin <56 cos e)),

where € is the angle between the piano of jp and q and th(‘. piano

of p and w. The chance that both molecules shall havti tlui

velocities aforesaid is

(1 4- 2hpX' cos ( 1 4- 2hqX' (cos yjr cos
<l>

4-Hin^/r Hin<;;!)sin e)).

Multiply this by ^mi'yjrdylr, and inb‘.grat(^ for nJl valiu'.s of

e and and we obtain

expressing now the chance that the velocities p and q, of two

molecules, in whatever direction either is, shall make thci RRgle

(f)
with each other. Now let n, v, w be the components of p ;

ih\ uf those of q. Then

pa + q^ =: 4- lya ^9 ^ ^ ^
dfld£l' = dudvdwdu'dv'dw\

pq cos
<l>
=W 4- vd 4- ww\

Therefore, since, with those substitutions, the expression does

not contain it gives the chance that two molecules, both

within the R sphere, shall respectively have velocities u...u-^du,

&c., in the form

dw . . . du/ “b (utl 4“ w' + ,
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that is, assuming &c., to be small,

. dw\

in which
4;,

Q =:u^-ir “h (uu 4* vv' -1- wwy

Evidently, if we take F' and 2' into account, we shall have to

substitute X'*^ + F'*-^ + 2'^ for X'^ in the last expression.

We see then that in the case now treated the coefficient of

correlation b has the form

6=-4?(X» + r«+^'0,
o

or, since X^ + F^ 4- 2^ =
,

X, F, 2 denoting the velocities of the centre of inertia of the n

molecules,

6 = -. ? (X'^+ 4" ^'^)/(T« 4-“F H- (31)-

82 . Next lot us employ the converse method, namely, the

coefficients b being supposed given, to find the ratio

And first let ua consider a finite number of molecules, and all

the b coefficients equal, and very small, so that 6^ &c., may
be neglected.

We have generally, referring to the determinant of Art. 63,

f 2 _ therefore
2hD

= p4-0
Dll

2hD’

9p being the variation of due to the introduction of the b

coefficients. Now it is proved in the Appendix (n) that in this

case dD = 0. Therefore

Dn dDn
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ALho l\, - r+/“. /i/a, /i/ii

r+/,\ .A/:..-

/../». A/». 1

and (bco Art. 83) 3 (1 +/,“) = - &/„ 3 (1 +/»“) = - hf^, &e.,

y./. = i (&-¥.-

If we wore now to make every /= 1, we find that (wc^ry

constituent in D„ as it originally stood is in the varied form of

2 — 5
jDn multiplied by

^
. Hence

But on the same assumption that iWiwy 1,

Dn 1

And f“ = 3/>„/2/» /) = - ^
6,

ft J
I

whence 6

71 being large, or

6--j(r+V“+r).

as we obtained in a different way in Art. 81.

83. Next, let us assume 6, thc^ coefficient of e.orrelation

between the velocities of two molecules, to bo a function of tlu^

distance r between the molecules to which it relates. And lot

it be re(|uirod to find, on this hypothesis, the ratio

For the system of finite spheres we shall have
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where hpq is the value of h for the two molecules whose velocities

are a^, a^, &c., whence, substituting for a„ as in Art. 63,

Q = (1 + 1̂
^ — ai^* + (1 -\-fi

— binfi) Os + &e.

-2a.f(l-|6,„2/)-&c.

+ 2 (/i/i + i&i2
- - ^Kfi) a-iCk+ &C. . . .(32).

Then r +r = + 26 j
2hD,

or f'2= 26-^y^2AI>,

every b being small, so that its square and higher powers may
be neglected, and, for the same reason, the variation of D may
be neglected, as will be easily found. Appendix (n).

Now in this case [see Appendix (o)]

26^^=-i226„,/^/„

in which p and q respectively take all values from 1 to 7^, there

being n molecules in the system. Also if we assume the

molecules to be scattered through space without regard to the

position of p, with density p, X^hpqfpfq may be represented by

the integral

tfp f
4f7rr^pdrbpg/g

;

J C

and if bpq is very small except for very small values of Vpq (see

Appendix (p)), we find

f 4nrr"-pbpgfgdr = Iff j
ivr^pbpgdr (33),

J c do

= 'Xf^%b, if Xb — f 4i7rr-pbdr,
J 0

and therefore

= ^^xf;xbi2hD=--^Xb.E
because S// = Ai ;

and if b be so chosen that ^Xb = — /c,

P = (34).

84. Again, it can be shown that under the same conditions

and this is the required ratio.
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f f
For since ? = «! Oa

'if_. '*/. ... ''/•

Now the dotorininant of thin exprcHHiou (Uffern from that of

Art. 63 only in the form of the coofficioutH. Thorofbro

\dz) 2hD 2/6
" *

Again, when the h eoefficiontH are introduced, we have,

Hubstitixting for ol^ in hmOLiOn^ &c.,

^
=

h

(2) ^ %
~

t)

^1-1iw /) /3
i/«^

ttiKa + &C.,

and by the same proceas as before

U^/ ~ \dz) ~2hjD~ 2h~'^\dzJ '

It follows from the above that any form of b which makes

jfZb = — K, or 4T7T’‘pbdr = — k,

= a,di +aa^^a+ ••.. 4*0tn^n) 1
:

if
dzlif

1

whence 1«1II»
1 A- - &C->

and () = «/ + «/+... 1

II

(2) ^ (
‘ + ^$7)

1'

2^1 df /
-07“'

1

1

1

«f _ ^ 0(j0£,j -1- &c.

?
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and satisfies the equation (33), gives a solution of

and the solution is independent of the form of the function/,
so long as that function satisfies the conditions of Art. 61.

The value of 26 is thus determinate. But the particular
.00 ^

form of b which will make J
J

4>Trr’‘pbdr = - * is not determi-

nate. For instance, let

fi - 3
6 =—

^

That is a solution of (S3) and (35) for all values of jx greater
than 3.

Again, let
fji a®

r < a.

6=- - 3 c®
,

« when r > a.
^ a®

That also is a solution for all values of fx greater than 3.

Here a may be the radius of a sphere which on average contains
one molecule, as in Art. 61.

85. The law of distribution of velocities being €“^^, where

Q= -f + &c.,

let a, /3, 7 be th^ velocities of a molecule of mass m, a', /3', y
those of any other molecule. Then, b being small, it is easy
to prove that

m2(5? -1- = _ 2 1^,

=--TZb,
= 2kT,

that IS, ^2 (««' + -t- yy') is equal to the Virial (taken as
positive) of the intermolecular forces, represented in case of
elastic spheres by collisions. In Art. 58, dealing with finite
mtermolecular forces, we advanced a step further, proving name-
ly that the value of (aa' -k y9/S' -I- 77') for any given r is equal
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to a particular part of the Virial npecially related to that value

of r. If wo arc to make a similar Btop in advance in the cane of

elastic spheres, it niust bo by dividing the Virial, if that be

possible, into distinct portions, cuich specially related to a

particular r. Instead of the Virial of the definite force which

m' exerts on m at distance r, let us calculate the chance that

m', so situated, shall be the next sphere to collide with m,

multiplied by the moan Virial of that collision if it occurs.

That gives us a part of the whole Virial which stands in

special relation to

Consider a molecule m. The number of collisions between

m and m with relative velocity V in time dt is proportional to

TTO^pVdt Suppose the whole system to have attributed to it a

velocity equal and opposite to that of m for the time being, so

as to reduce m to rest. Then the sphere m' which collides with

m with relative velocity V must have described a certain free

path, which must have commenced at some distance r ... r 4* cir

from m.

The chance that it shall have commenced at distance

r...r + dr is of the form qc’^dr^ where q is indopendeiJt

of r, but a function of V. But m' starting from collision at

distance r from m, is as likely to bo moving in any direction as

in any other; wo must therefore divide by Again,

the Virial of the collision if it takes place is by Art. 28.

Lot us then introducing the factor ^ , assume for given V
qT

TTC^Vc Vg

and therefore, given F,

— 1 ^Trr'^pbdr ^ ^.TTC^p --j
/

J c ^ J 0

mVo
4

and taking means for all values of V
^l,b = - iTTCPpT ^ - kT.
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To express 6 as a function of r, we must perform the

integration according to F, and not according to r. That is

1 , _ 2 TTG

2^”3Wtic4J0
in which is a function of F, and C is the usual constant.

That appears to satisfy all necessary conditions for b. But
it is not a complete solution of the problem, because the intro-

c
duction of the factor — is not proved to be necessary, except

to satisfy (33). It is possible that, as in Art. 57, the corre-

lation, that is, 6, may depend on the angles which the velocities

of two molecules make with r, the line joining their positions,

as well as on r.



CHAPTER VII

FINITE INTERMOLECULAR FORCES. BINARY ENCOUNTERS.

86. It is worth while to apply the method of Chapter v. to

molecules between which finite forces act. Nothing is assumed

concerning the force acting between two molecules, except (1)

that it acts in the line joining their centres, (2) is a continuous

function of the distance between their centres, (3) becomes

repulsive and infinite as that distance is indefinitely diminished,

(4) is evanescent at all distances greater than a certain line

c which is very small compared with the dimensions of the

space in which the system of molecules is moving. A sphere of

radius c described about a molecule shall be called its sphere of

action.

It seems necessary to assume (3) that for sufficiently small

distances the force becomes repulsive and infinite, if we are to

hold that there is a very small distance within which two

molecules cannot approach each other.

87. With this definition of a molecule, let us assume that

the number of molecules scattered through a given space is so

small, or the aggregate volume of their spheres of action bears

so small a ratio to the space, that no molecule is ever within

the sphere of action of more than one other molecule at the

same instant. In other words, the encounters are binary. Or

that the number of such complex encounters which take place

in unit of volume and time bears so small a ratio to the

number of binary encounters, that we may without appreciable

error assume all the encounters to be binary.
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Lot, FX

i)()

88. KuppoHo fiml, a luolooulo P fixini in Hpiioo.

bo tiny lino tlirough IK

Ltvt Q \m a poiiit, junt outnido nf ilu^ aplun'i^ of aotion of P
and (lintiaut t from PX, And lot aiuddior particlo at Q of masH

fn rtmvo with volooity q paralltd to A^/^ An onoountor takes

place, and since the ontjountors are iwsumod to bo binary,

m (loHcriboB a syinniotrical ciirvc^<l path QliQ\ It being the

apse. Lot the angle XPIt^^. The whole ofifoct of the

encounter, ho far as regards the change of direction of the

motion of m, is the same as if t/t received mx inn)ulHe 2mq
in direction PJL '‘fhen also P experunKHman inipulHO 2mf/oos'>|r

in direction UP.

Let the number ptu* unit ef vohnm? of nndoculoH which at

or near Q have vidocity f/ - . hdq in dirtudaon XP be f{q)dq»

Then the sum of the impulses which P (experiences in unit of

time from all the molecules which so move is 2mf{q)q^dqooH^lt,

and the mean force per unit of time on I* due to all molecules

moving from Q in direction XP is

2m
J/(q)

(f cos dq^

^ being a function of 5,
and the integration including all values

of g. If I also varies ^}r is a function of q and L

Now suppose a circle described about X with radius I in a

plane at right angles to XP. Let m, moving parallel to XP,
be before encounter anywhere on that circle, and lot the angle

made by the plane QXP with the plane, of the paper be e. It

will evidently lie on a circle parallel to the circle described

about X.
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If PZ be drawn at right angles to PX in the plane of the

paper, the mean force on P resolved in direction PZ due to the

molecules moving from Q in direction parallel to XP is

[/(?) cos yjr sin '^dq.2m cos 6

And if now I also vary, the mean force on P in direction PZ
due to all molecules moving in direction XP, whatever the

value of I, is

2m
J

cos edej 27rldl
Jf{q)

q^ cos 'xjr sin '^frdq,

i/r being now a function of I and q. It is of course zero.

89. If P, instead of being at rest, be moving with velocity

u in direction PX, we must write w + j for g' in the above

expressions. The force on P for any given value of e will

then be in direction PP, and equal to

2m 27rIdlJ dqf{q) (q + uf cos yfr.

And the mean force on P in direction PZ will be

2m
j

cos ede
J

2irldl
Jf{q) (q + uY cos yfr sin yfrdq.

Now let the plane of the paper be the plane of XZ, XP the

direction of x. Let the function ^ have at P the value

dP
at any point whose jz ordinate is dz the value ?o +^ dz. Then

the velocity of P relative to Q will he q-hu-h-^ I cos e.

And the mean force on P in direction PZ is now

4i7rmJ cos ede
J IdlJ dqf{q) ^2

+ ^^ cos cos yfr sin -x/r.

That is, if u, v, w be the component velocities of P,

^ — 47rm
J

cos ede IdlJ
dqf{q) + cos cos'v/rsinilr

= — 47rm
J

Idl
J
dqf{q) ^^ cos sin
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And u being negative let us write - u for u. Then

^ + ^JTTTO Idl
Jdqfiq)

(qu + cos yfr sin \jr

— + 4i7rm
J dqf{q) cos ^jr sin -v|r^

,

on average of all values of m
;
or writing ^ for iiiv?

[chap

dw _ df 1
“ dt ~'"dz2fi’

where /c = 47r
J

Pdl
J dqfiq) cos a/t sin 'yjr.

By symmetry has the same value nmtatis mutandis.

and therefore
d — /df d^
jrUW = K

[

d^
,

d^\ d

dz dxj
'

dz dx) dt dz dx

90 . This agrees in form with the result obtained for

elastic spheres in Art. 76. But k, instead of being a known
constant, now depends on the unknown law of force and is a

function of g^. Further, in the expression for k, cosi/r is

TT
necessarily positive, because lies between zero and -

,
and

also cos i/r sin ‘yjr is necessarily positive, and tc is necessarily

positive. Now if > ^ , cos yjr sin yjr diminishes as yjr increases

;

that is as g increases, because ^ is positive
;
if 'v/r < ~

,
cos 'x/r

sin 'xjr increases as g increases.

TT
Also the condition that ijr shall bo less than

^
is that I be

less than a certain magnitude, which we may call Iq, and the

greater g is the smaller must 1^ be. It follows that as g^ or

the mean kinetic energy, increases, it becomes less probable

that shall be less than ~
,
and therefore more probable that

cos sin '\|r shall diminish as g increases.
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Therefore if
(f bo groat enough, cos yfr sin yjr taken on avcu'ago

of all values of I and q, will ultimately diminish as (f increases.

And therefore /c must for suflficicntly high values of (f, that is

of the mean kinetic energy, or temperature, if the two are

identical, either diminish as the temperature increases, or in-

crease less rapidly than the temperature.

91 . We have now to consider the other term in

namely,

d fd^
di \dz dwj

dM
dt

Let us again assume the encounters to bo binary. As in

Art. 68 describe a sphere of radius a about any point 0, and let

PP' be a double ordinate parallel to z, P anrl P' being on th(j

surface of the sphere.

Then
47ra®
“3

Suppose two molecules to encounter one another, the point

of contact of their spheres of action being at the centre of the

sphere. Lot F*, Vy, F* bo the components of their relative

velocity before encounter. Wo may stipposo tlioir common centre

of inertia at rest, since its motion will not affect f/. on average.

Let us consider the change of — due to this encounter

only, that is

I’ _ 4)77(1
®

jj
chdy

dt dt /

'

3

dP >

First to find
,
let / be referred to P as centre, and lot

/o denote its value at the centre of inertia of the two spheres of

action. Let / be the value of/ at tho centre of cither sphere

when the encounter begins. After the encounter has ceased /
will have become /', corresponding to the final relative position

of the two spheres of action. Let have become F/.
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If be the change in duo to the encounter, d^p is,

1
omitting the factor ^ which is on average constant, propor-

tional to, and has the same sign as

that is, if wo write = X T, VJ - X' V, &c., the same sign as

X/'-X/.

Now let 6 bo the angle betwotsn the relative velocity, whoso
direction cosines are X, fi, v, and the line of centres at the

commencement of encounter.
,

Then 2i/f— dis the corresponding angle at the end of the

encounter, \}r being the angle so denoted in Art. 88.

c
Then wo have,

^
being the radiuB of the sphere of action,

/=/o 4-
1
(— COB ff 4- Vi — I/® Bin 0 COB

f'zszyj, 4- I
(— p COB 2^ ^ .f y I

— — $ (‘OB

also as shown in Art. 72,

\v
X' = — X cos 2-^ — sin 2^ cos

and therefore, omitting cob <j> and writing ^tt for cob^ as the

result of integrating according to

X'/' = X'/o+ 1 X?/
.
(cos 2-^ COB2^^ — I sin 2'\/r sin 2n|r - $)^

= xyj, 4*
I

Xi/
. ^ (cob 0 (4 coa^ '\|r — 4 cos^ + 1

)

- cob ^ 2 cos® yjr sin® yfr

4 sin 0 2 sin 's/r cob a/t (2 cos® '>/r — 1)

4- sin 0 sin ^|r cos ifr (2 cob® y[r — I)),
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Also X/o

“f X I
(— COS ^ + Vl — sin 6 cos 4>)

= X/o-X,/|coa^^/

on average. Also for the pair of spheres (X' — X)/o = 0, and

f 2 cos ^ sin ddff (X'f — Xf)
Jo

zsiXv^-f ( 2 cos^^ sin 0 dd (6 cos^ — 6 cos^ '>/r + 2)
2i (iz J 0

+ Xp^^ f 2am^^C08^dd3Bin^lrC08'\lr(2c08^^Jr--’l) ..,(36),
ZazJ

j

which can be easily shown to be positive, 6 being less than yjr,

and yjr loss than ^tt. Therefore ay ^ is positive.

92 . If instead of being repulsive as hitherto assumed, the

force between the molecules P and m bo attractive, it is possible

that the approach of the two may result in a permanent union,

each molecule revolving in a closed curve round the common
centre of inertia. Leaving this case out of consideration, the

form of the path described by m with reference to P regarded

as fixed will for attractive force be as in this figure.

I TT

I

The angle is now between
^

and tt instead of between

zero and ~ as in the case of the repulsive force. The impulse

on m is represented as before by 2mq cos yfr, cos yjr being now
negative. The mean force on P due to a succession of en-

counters is in direction P.R instead of PP. The reasoning of

Art. 89 will apply equally well to this case, except that in the
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result will bo of the opposite sign to

same sign, and +

itiHtuad of hhi)

That loads in stationary motion to a positive sign for the

coefficients b. It is conceivable that the force between two

moleculoB, being a function of the distance r between them,

may change sign at some value of r. If however there bo a

limit of distance within which the centres of inertia of two

molecules cannot approach c^ach other, the force must ulti-

mately, as r is indefinitely diminished, become repulsive. And
as the density increases the near approaches becotning more

frequent, the repulsive forces must xdtimately predominate.

The effect of the attractive forces, if stich exist, will be, not to

make the Vb positive, but to make, them have less negative

value than they otherwise would have.

93. So far wo have assunied the (mcounters to be binary,

so that for each encounter cuther tnolecule (h^scribes a complete

symmetrical orbit with reference to the otluu', complete^, that is

in the sense that after the two have separated to th<^ very small

distance g from each other, th(5 motion of (utlu^r is H(uiHil)ly

rectilinear in the asymptotes. If we resmovts this rtsstriction to

binary encounters, we may resason as follows.

Assume to bo positive at the origin P. Then a molecule

at P moving with u negative has greater velocity relative to

molecules on the side of positives z than to thosci on the side of

negative z. On the average thcu-eforci the potential of the

mutual action of P and the other molec-ulos will be greater

with z positive than with z n(^gativ(‘. Lt^t p b(i that potcmtial.

Then is positive.

Therefore if iiy v, w b(i tlu^ component velocities of J\

dw dp .

IB on average negative. And therefon^
dw .

dt
IB on
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dP
average positive, or has the same sign with . Also its sign

has no relation to
dec

Similarly is on average of the same sign as and

dP
independent of the sign of . And therefore

dPdi;\ d—
\dz dx) dt

uw

is necessarily positive.

And therefore in a system of molecules of the kind now

considered is positive, and the motion not stationary if
Cut

of Art. 61 have the same mean values as they would

have in the medium of material points. To effect stationary

motion, must be increased as we found to be the case

with elastic spheres.



CHAPTER VIII.

GENERAL THEORY OF THE STATIONARY MOTION.

94. Having established the results contained in Chaptei*s
IV. and V., I shall now assume for the law of distribution of the
coordinates and velocities among an infinite number of mole-
cules in stationary motion the following, namely: The chance
that at any instant the coordinates of the molecules, n in
number, shall lie respectively between the limits

and

yi n yi + %1,

and

Vn „ Vn +
Zn „ + dZn,

and their component velocities between the limits

and tti + dcLiy

A „ A +

7i « 7i +

On and Oin + doLny

yn „ 7n + dyn,
n

(

h\

^

— ] dx^ . . . dzndcLi . . . dyn*
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Hero Q = cii {pti + + •yi^) + 0^2 (s^+ ^2 + *72^)

+ &12 (ttitta + fiA + 7172) + &c.

The ‘a' coefficients are independent of the positions of the

molecules. Every b, as bpq, is a function of the distance, at

the instant in question between the molecules to whose

velocities the suffixes pq relate, such functions satisfying the

conditions of Chap. v. D is the determinant of the coefficients

in Q.

Again, A may be explicitly a function of the coordinates

oc, y, z, &c., or may be a constant, Vi) is a function of the

coordinates, only as contained in the coefficients b. Then
evidently

n
:|

Vs
JIJ

. . da^...dy„=l.
!

Instead of using the word chance, we may say that the
j

above expression represents the time during which on the

average of any very long time the coordinates and component

velocities will be found respectively within the limits aforesaid.

96 . The function Q may conveniently be put in the form

Q = aioti® + i tiaaiOa + i ’b^oL^oL^ + &c.
ij

+ aaOa® + i b^iOL^OL^ -f- \ b^Oi^ + &C.

ll

4- &c.,
j|

in which each line is appropriated to a particular molecule. l!

96 . According to the results obtained in Chapters iv.
||

—VI. it is necessary for stationary motion that

(Art. 79) shall have a certain value. That necessary value it

will have if suitable values be given to the coefficients b as

functions of r. The coefficients b being so determined, the

motion is stationary, so far as not to be disturbed by the I

collisions or mutual forces of the molecules. I assume now
that in Q the h coefficients have the values so determined. I

7 9 '

!
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97 . We can now deduce the fundamental property of this

distribution, namely, that for any given set of positions of the

molecules, or as we shall call it, for any given configuration,

dQ_^ dQ

For

^ ~ dcT
^ average.

= 2aiai + 61202 + ^13^3 +

If, with Oi constant, Og, Os &c., assume all possible values

consistent with the conservation of energy, we find (see

Appendix (h)) that the mean value of

dQ
or 2aiai + 61202 + &c.,

is jr OLu D being the determinant of the coefficients a, 6, &c.
-^11

in Q, and Ai its coaxial minor obtained by striking out the row
and column containing Oi. Therefore also

dQ D 2

But it is also shown (Appendix {g)) that

Ax
hD^

a^=:

whence on average

dQ _ D Ai 1

^ doi Ai hD h

'

Similarly
dQ 1

02 3— =T&C.
aoa h

and
dQ dQ .

Oi = as = &c.
ooi dos

.1.

98. Inasmuch as the system is infinite, and there is no direct

action between any molecule and any other molecule except at

distances very small compared with the dimensions of the

system, not only is the sum of the potential and kinetic

energies constant, but the kinetic energy of the whole system

is itself separately constant. Let the kinetic energy be

T= J mi (Oi^ + /9i^ + +

1

m2 (Oa^+ + 72O + &;c.



Vrn.] GENERAL THEORY OF THE STATIONARY MOTION. lOl

Here if be velocity of tranalation m is mass, if a be

velocity of rotation m denotes moment of inertia, and so on.

Then wo have by the constancy of T,

wii«i + &c. =* 0 II.

For the same reason Q is separately constant, or

dQ^ dct^
?
-f- &c. = 0

dui dt dot^ dt

Now 11. and III. suggest the inferonco

d(Xi

dQf .= mac(a==&c.

m.

.IV.

An obvious solution of this is Q = (a^ H- + 70-

as proved in Chapters IV. and V., this does not give stationary

motion when the molecules have finite dimensions, except in

the limiting case of infinite rarity.

99 . Concerning the Mmwell-Boltzmann Law

niiai = = &c.

This follows at once from Art. 97, and IV., if IV. bo accepted.

It must however be noted that IV., although a consistent, is not

a nocessary, consequence of 11. and HI. E'er while a^, a^, &c. arc

unchanged, let all the molecules undergo stnall displacements.

Then ™ &c., depending as they do on the intormolecular

forces, will receive variations, which may bo arbitrary, as the

displacements are arbitrary. If under these circumstancoB

dO~
, &c. remained unchanged, IV. would be a nocesBary conse-

^ dO
quonce of II and III. But ^ &c. do not remain unchanged.

So IV. is not proved by II. and III.

If we assume condition A, wo assume in effect that the

6 coefficients arc all zero, and Q — It follows then at

once from the law of distribution that miUi = maOt/ = &c.

The law is therefore true whenever condition A can legitimately

be assumed. It is true, that is, in the limiting case of infinito

rarity.
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I am not aware that it has ever been proved in any other

case, or by any assumption not equivalent to condition A.

If it were true in the general case, we should have, comparing

II. with III,

dQ
I

dQ
I

„

and therefore by Art. 97,

D D
^2-^22

or ^Ai= ^^22=

But Ai A2 J
&c. are functions, not only of the masses of the

molecules mi m2 ,
&c., but (if they be elastic spheres) also of

their diameters, (if they be centres of force) of their effective

volumes. It seems therefore to follow that the law

= m^OL^, &c.

cannot hold universally. It can be accepted only on the

authority of the great physicists by whose name it is known.

100. If therefore we write

dQ
/

<<6 / _

fjui, fi2 ,
&c. will in general have different values for different

kinds of molecules in our system. Only in the case where the

dQl

= &C.,

molecules are all of the same kind, may we write ~
j

m = fA.a,

where is constant.

In all cases however in which the b coefficients are very

small fjbi, &c. will be very approximately equal to each other.

For in the limiting case when the 6's are all zero

Q=a^ai2 + a2ez2^+&c.,

and we know that = 02 = mg, &c. When the 6’s are not

zero, every coaxial minor, as Ai» consists of the product of all

the axial constituents . .
. ,
and of other terms each of which
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contains the product of not less than two 6’s. The quantities

will therefore, as long as the Vb are small, differ

from each other only by small quantities of the second order.

Field of external force.

101 . We may now equate to zero the time differential of

A ^/ and so obtain, applying Boltzmann's general method,

^\dtdx^ dt dy ^ dt dz)
^

+ V i. .

dp. i ^ = 0
^^\dtdoL^did0^dtd^)^-^

„ ,
dco dy a dz

s"*’

Again let the forces acting on the system have a potential

Then
da. dy

/m.- -= —

dcLj ^ dx

And the equation bocomes, arranging tho tonnH,

V:D 2 (a ™ + Vi) 2 fyS
™ ~ ®

\ doo m dx da J \ dy m dy dpj

y dz m dz dyj

-4JV5SS(aa'+ a/3' + 77')(«| +^|+ 7f)-0.

Let us first consider the terms which involve differentiation

of the b’s. Since every 6 is a function of the corresponding

r, and of that alone,

— —^ — — dp a; —

a

/ „

dx dr dx~~ dr r

r»= (a; - «')» + (y - y')" + (« - V)’’.where
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Aiid aincG
D J)

mj)n mj)„

Thia m aatinfiod by asBuming, if the molociiloB be all of

the same kind,

A =6”“^^^ ...,...(37).

We have then for the law of distribution of coordinatos and

velocities in a field of external force whose potential is %
n

V2) dwi , , . dZndoLi. .-dju

Now 'rrh^^i *
mi _ 1

hJJ hfjL

and nT « J2m (a'^ + 4- y) « ,

the system consisting of n molecules of the same kind.

But Q =s a^oL^ -I- Kj^aica^ 4- &c.

itiDii 4* f^jaAa 4" 4” &C.
” hJD

Bn

"“2A*

Therefore Q^fjLuT (39).

103 . With regard to the inclusion of the intermolecular

forces under the potential % the same considerations apply as

in Chap. III. I shall assume that wo may use the form

As an example lot us now again consider the system of

equal elastic spheres in vertical column, Arts. 29 and 45. In

that case % is the potential of the constant vertical force. Let

us suppose /c, and therefore all the h coefficients, very stnall. If

the a? velocity of any molecule, as bo given, the mean value
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of is where T> is the determinant
•1^11

2 &12

&12 2 ^23 • • •

for in this case the a coefficients may each be replaced by unity.

Now A2 contains the term —612 multiplied by axial coefficients

only, and other terms each of which contains the product of at

least two Vs. Therefore if each b be small enough, the mean

value of U2 is ultimately — ^b^Ui.

Similarly Wa = — ^b^^Ui ,
&c.,

and therefore = /jlitIjUi = (2 —

or mif6 = (2

—

It thus appears that 6“^^^ differs from when k is small,

only by small quantities of the second order. Now the factor

g-(/c-«:o)^ or €~'‘, in the expression for the density in Art. 29

corresponds, not to but to That is, if a/t be the

potential of the intermolecular forces, e"”'" is what or

becomes in the limit when the forces become infinite for the

distance r = c.

And K being small the solution agrees with that of Art. 29.

It does not however agree with that of Art. 29 when &c.

cannot be neglected. Which result then are we to accept

in this case? Evidently the result because Art. 29 is

based on the tddt assumption of condition A, and therefore

holds only for smaU? values of k. To sum up the discussions of

this problem.

3
If K be neglected, the law of density is with T =^ .

If k\ &c., but not K, he neglected, the law is with

If /c®, &c., are not to be neglected, the law is with

X
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BoltzmanrCs Minimum function,

104. The following theorem is not to be compared in

elegance with the theorem founded on condition A, Art. 38,

but has the advantage that condition A is not assumed.

Let f(ui . . . Un(Zi . . . or f, be any positive function of the

coordinates and velocities u^,,,u^, oi a system of

molecules, and of certain parameters a, &, &c. Let ^ be a

small variation of f, a, 6, &c., being constant. Let us write

/+ 0/=/l H- q, or a/= qf.

Let the variation df or qf, be made subject to the following

conditions, viz.

+ qdx^ ... dzndui . . . du^

=
JJ.

.
fdxi . . . dzndui . . . dun,

or writing dsda^ for the continued product of differentials,

J
j- • -fqdsda- = 0 ( 1 ).

J
. ./I -f q Cdsda- =

JJ*
- fCdsda-,

JJ.,fqCdsdcr = 0 (2),

where C is any function the constancy of which is prescribed.

Also

or

Again, let

^ = jj- . ./(log/- 1) dsd<r,

£r+ dff=JJ.../l + q {log(/i + ?) — 1} dsda-.
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We have then

^+^^=IJ--f(logf-l)dsda-

+ff-fhgT+ q dsda

+ ff-A'^og/dsda-

+//•••/? log r+ g dsdar

jj.-./qdsdcr

=^+ jj-.f^dsda

+fj-f(q^-^)dsda

+ fj---/qlog/dsd(r

= £[+
^ jj.. .fq^dsda

+ jj--/l^ogfdsda-,

because f is to be neglected.

In order that dff may be necessarily positive, or S may be
least possible, subject to (1) and (2), it is necessary, and it

IS sufficient that
jj fq

log/dsdir = 0, that is by (2) that log /
shall be a function of C, that is that f=A^~^°, where

fj...fGdsda-

is constant.

n

We may write AVB for A and Q for C. The actual

value of jET when minimum is

|log^ + log.4 +|logD-^
(40).
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Physical effect of the b coefficients.

106 . From tho law of distribution at which we have now
arrived we can find the mean value of any of the products of

tho form aa\ &o. For instance, otidu — Di^lhD, D being the

determinant of the coefificientB. And all tho I'b being negative,

Dia- is necessarily positive. If we have only two variables w

and y, and if

Q s aaf -h hxy -I- cy\

b being negative, we find 1)^ = — &, which is positive.

So with three variables, w, y, z, and

Q = + a^y'^ -f

+ bi^y + bi^z •+ b^yz,

we find Dia = - + bj)^,

which, every h being negative, is positive. (See Appendix (6)

as to the sign of these minors.)

Tho conclusion to bo drawn from this is that if two mole-

cules are so near each other that h is not negligible, they are

on average moving in the same dircctioji. There is at every

point on average a determinate energy of stream motion. It

follows further from this uniformity of direction that if a%

yS^, bo the mean values of those functions for all molocules

within any small finite apace, (ayS)®, &o. have greater value

than they would have if the molecules were material points.

Another consequence of the b coefficients.

106 . But we might also, treating the volocitios as con-

stants, proceed as follows.

Let for a moment tho chance that two molecules distant r

from each other shall have velocities in oo, u ...n + du and

u\.. u' +du' be proportional to

dudu\

in which b may be g — ,
and > 3.
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It is coQvenient here to treat h as positive, and prefix to it

the minus sign in the index. That being the case, if h be not

negligible, that is if r be small, uu' is more likely to be positive

than negative. If r be great, and therefore h negligible, it is

indifferent. It follows by the theory of inverse probabilities

that, it being given that uu' is positive, r is more likely to be

small than if nothing were known of the sign of uu'. If on the

other hand it be given that mi is negative, r is less likely to be

small.

Suppose a molecule at P with velocity u, and an element of

volume d(o at P', distant r from P. Let the chance that there

shall be within c?a) a molecule moving with velocity u' be

when PP', or r, is great, and 6 = 0. Then when the

chance becomes

which is greater or less than ^Irdco, according as uu' is positive

or negative.

Further, the chance that there shall be a molecule within

d(o with velocity either u or — u is, since a priori •+• u' and — u'

are equally probable, and the system is supposed infinite,

uu' being now treated as essentially positive. That expression

is equal to i/rcZo) if and higher powers of h are neglected. But

if 6^ &c. be taken into account, it is greater than 'yjrdo).

107. It follows from this result that under the law of

distribution of coordinates and velocities at which we have

arrived in this chapter, if at any instant we calculated for each

of the molecules the value of Xb, or the sum of the b coeflScients

connecting the u velocities of that molecule with the velocities

of each of the others, the average value of 26 would be

greater than it would be were all the molecules scattered

through space at random. That signifies that the molecules of

the entire system would be collected into denser and rarer

masses—the effect of which evidently is to increase the mean
value of 26 for all molecules. Further the ratio would
have a greater value for the denser masses than for the rarer
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ones, or the stream motion would be gi'eater for the denser

masses than for the rarer ones. So that the system would tend

more and more, with increasing number of molecules in a given

space, to assume the form of a number of denser aggregates, say

clouds, moving through a comparatively rare medium.

108. It is not essential to my argument, but I will here

give what appears to me the best possible definition of density

at a given point at a given instant, for molecules of finite

dimensions.

I would define namely as follows. The density at any

point P at any instant is — 26, where 26 is the sum of the

6 coefficients, all being negative, of all the molecules of the

system referred to the point P—that is, 6 for any molecule is

a function of the distance of that molecule from P.

109. It is assumed throughout this investigation that the

quadratic function Q is positive, that is, that the coefficients

a, 6, are such that Q cannot be made negative, whatever values

we assign to the velocities. It is assumed that the distribution

of the molecules in space, and therefore the coefficients 6, are

on the average such as would be calculated by the method above

indicated, the whole number of molecules of the system in a

given finite space, i.e. p, being known. Should that condition

ever fail, the motion of the system can no longer bo represented

by the law considered in this chapter. It is reasonable to

expect that the change of the mathematical formula will

coincide with a change in the physical state of the system.

' 110 . The condition that Q shall bo necessarily positive,

whatever values be assigned to the velocities, is that the deter-

minant P, of the coefficients in Q and all its coaxial minors must

be positive. See Appendix (p). As the 6 coefficients increase in

absolute magnitude, P, being positive, diminishes. But as the

density p increases emteris paribus

j

the 6 coefficients do generally

increase in absolute magnitude, and P, with all its coaxial

minors, generally diminishes. The 6 coefficients are generally

also functions of the mean kinetic energy, or temperature,

as well as of the density, and if the temperature he high
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enough, probably diminish as that increases (Art. 90). As the

density increases, or temperature diminishes, or both, the

system may ultimately arrive at a state, in which D or some of

its coaxial minors becomes zero or negative, and then the change

of physical state ensues, whatever its true description be. Now
to any group of molecules we choose to select, and therefore to

all the molecules forming one of the denser masses or clouds

above mentioned, belongs a particular coaxial minor, that

namely obtained by striking out all the axial constituents of D
except those which belong to molecules of the group. Gener-

ally therefore the condition may be expected to fail for some of

these coaxial minors before it fails for the complete determinant

D. So that as density and temperature vary continuously, the

change of state, or liquefaction if such it be, will take place

partially and gradually, some portions of the system having

passed into the changed state, while other portions remain in

the original state. Further, the higher the temperature, at all

events after a certain point is reached, the greater the conden-

sation necessary to make D, or any coaxial minor vanish, and

therefore to produce the physical change in question.

Such is the process which our analysis leads us to expect.

Physicists may consider how far it corresponds with what is

known to take place in gases under condensation, or on what

(if any) farther hypothesis it may be made to correspond

with it.



CHAPTER IX.

I

OF MOLECULES AS CARRIERS.

111 . The molecules being elastic spheres, and condition A
being assumed, to find the mean fi:ee path for a sphere issuing

from collision with velocity co. As the mean free path has

I

received more than one definition, I define it as follows. Sup-
pose a sphere m to start from a collision with velocity o), and to

undergo n successive collisions. After each collision let each of

the colliding molecules have restored to it the velocity which it

had before collision. Then our sphere will describe n paths
Ij, k--- In between its collisions, each with the same velocity &>.

; The mean free path for velocity co is then

f
+ ^2 + • • • + i!?!

I

,

when n becomes indefinitely great.

If yfr be the velocity before collision of a sphere m' which
collides with m, E the angle between the directions of motion

of the two spheres before collision as in the figure, the relative

velocity of approach is

jR = Voo® -f- — 2a)'\|r cos E,

Let c be the sum of the radii of m and m'. Letf(y/r) d'xfr be
the number ofm spheres in unit of volume. Then the number

8B.
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of collisions wliich m undergoes with the mf spheres per unit of

time is

if f fi'k) sin EdE= ttcWi suppose,
J oJ 0

and the mean free path for an m moving with velocity co, if no

collisions occur except with spheres of the w! class, is •

If there be two classes andm2 , and m can collide with another

sphere of either class, we shall have a corresponding number of

collisions per unit of time between m and m^, which we will

denote by ird^N^, Then the mean free path for velocity g) is

X<o = — -

- T.r V and so on. To calculate the mean free path
TTC^ (iVi 4- iv 2)

^

is to calculate + iV 2̂ >

112. Another method of obtaining this result is as follows.

Let S be the whole space in which our spheres are moving.

Consider a sphere m moving with velocity &>, and another sphere

mi whose velocity and direction of motion are comprised re-

spectively within the limits ^|r . . . + cZ'v/r and E dE, as

in the figure.

Now mi may be anywhere within & If its centre be at this

instant within the cylinder whose base is a circular area of centre

m and radius c, the sum of the radii of m and mi, at right

angles to R, and whose height is Rdty then, but not otherwise,

a collision will occur between m and r/ii within the time dt after

this instant.

The chance that such collision shall not occur is then

TTC^Rdt

Now the number per unit of volume of spheres mi whose

velocity and. direction of motion are comprised within the limits

aforesaid is f{'\^)dy^\sm.EdE, And therefore the number
within S is dy^ \ sin EdE, Let us now assume that the

aggregate volume of all the mi spheres within S is negligible
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compared with S. Then the chance that during dt m shall not

collide with any one of the class mi is

V S )

raised to the power of

d'ylf' i sin EdE,

that is, in the limit when dt becomes infinitely small,

1 — ird^RdtfQ^) dyjr ^ sin EdE,

and the chance that m shall not during dt collide with any

whatever be the values of yjr dr E, is by the same reasoning

1 — irc^dt f f /('y/r) d'y/r J R sin EdE= 1 — ircHtNi suppose.
J 0 J Q

Similarly if there be other classes of spheres, &c.,

with which m may collide, the chance that it shall undergo no

collision in the time dt is

1 ~ Trd^dt {Ni + = 1 — ird^dtNj

ifiV'=iV^i + iV^2 + &c.

By the same reasoning the chance that m shall undergo no

collision in n successive intervals of time dt is

if t^ndt
1 ~ irc^Nndt = 1 — TTC^Nt,

Also if X be the space described in time t

X
X = 0)^, or ^ .

Therefore the chance that m shall survive for a distance X

without undergoing any collision is 1 — nrc^N ~ .

Let 1 — irc^N (j) (X) = <f>.

Then
<f)'

is the proportion of the whole number of spheres m
which, starting with velocity co, traverse the space X without

collision. Also ^ (X + dX) = ^ (X) (dX). It follows that

_ A --U if
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and therefore <j) = C€~^\ Also <^
= 1 if X = 0. Therefore G=1

and (j) = €~^\ Whence if X be the mean value of X given co

\ = kj^ = i =^= + N,+ ...)

which is the same result as we obtained above (111).

The expression

TTC^ f d^lr f sin JEdEf{ylr) d'^^ Vg)^ + — 2o)'\|r cos E
Jo Jo

can be calculated numerically in terms of ttc^ and h if

The fundamental equation.

113. Let Q be any quality, e.g. mass, colour, charge of

electricity, momentum in given direction, &c. which a molecule

may possess in greater or less degree, and which it can carry

with it unchanged by its own free motion, and which, as

regards the aggregate possessed by two colliding molecules

is not changed by collision. Suppose a quantity of gas con-

tained in a vertical cylinder of which the height is very small

compared with the diameter of the base. Every molecule that

enters the cylinder through its upper flat surface shall enter

charged with the quantity Gi on average of our supposed quality

G. Every molecule that enters the cylinder through the base

shall enter charged on average with the quantity Gq. When
the motion has become stationary, every molecule within the

cylinder at a height z above the base will be on average charged

with a quantity of the thing in question between Gq and Gi.

Let it be called G{z), G(z) in stationary motion will be a

function of z.

114. Now consider a layer Pi of molecules in the cylinder

between the planes z^ and z^ -}- dz^. If the molecules within

that layer were enclosed between two elastic planes Zi and

Zi + for a finite time, the distribution of velocities among
the molecules within it would become, under the circumstances
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supposed, completely indepeudetit of the quantity of Q- which

they happened to carry. It would become in the strictest sense

of the term molecular ungeordnet.” In other words condition

A would prevail.

Collisions would occur within that layer, and a.ny molecule

emerging from such collision would be as likely to be moving in

any one direction as in any other. The chance of its having

any particular direction would be independent of its charge 0.

Consequently if any such molecule, having undergone col-

lision within the layer Pi arrives without further collision at

the layer P, the mean quantity of Q which it brings with it is

the mean quantity of Q per molecule for all the molecules

within the layer at Pi. This is the fundamental assumption.

116. Now let Oz be the mean value of that quantity for

all the molecules within the layer z z dz F, Suppose a

molecule to arrive at that layer from above with velocity

between v and v + dv, and in direction making angle between

d and dd with the vortical. Lot X be the distance which

on its arrival at P it has traversed since its last collision. Then
such last collision must have occurred at a height X cos 6 above

P. Therefore the quantity of Q with which the molecule is

charged is the mean quantity of G for the height .2^ -f X coh.^,

that is

dQ
& (z + \ GOH 6) ^ Qz cos d~

,

because X cos 6 is small

The number of molecules which, having velocity and direction

between those limits, pass through the hori2:ontaI plane F per

unit of area and time is v/(v) ^ sin 0 cos ddddv.

Hence the quantity of 0 carried through the layer F per

unit of area and time by molecules coming from above is

TT TT

vf{v) dv^J sin ^ cos 0G (£;) dff + j’ \ cos“ d sin ddd^f{v) vdv

= (iGi^)H-^^£)f(v)vdv.
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and taking

Here

By the same reasoning the quantity of G carried through

the layer P per unit of area and time By molecules coming
dC

from below is IQ (z) — .

And the quantity passing through P downwards exceeds

the quantity passing through P upwards per unit of area and

time ^ •

116. This is the fundamental equation from which Boltz-

mann calculates the rate of diffusion, viscosity &c. in gases as-

suming condition A to prevail. It would represent with complete

accuracy the initial motion of the system, if the quality Q were

suddenly attributed to the molecules in the degree proper to

but without regard to their velocities.

It takes no account, as he points out, of any variation in the

distribution of velocities which may be caused by the quality

0 itself, for if for instance G be momentum in given direction

at right angles to the axis of our cylinder, such a change in

distribution must exist. It is assumed that the effect of this

change in distribution on the mean free path X is so small as to

be negligible, a condition which must be secured if the given

terminal conditions, e.g, Oq and (?i, do not differ very widely

per unit of distance.

117. The method also takes no account of the stream. The
effect is to set up a stream, so to speak, of Q from the upper to

the lower parts of the cylinder. And that, as will be found,

causes a small error in the result. The error may indeed be

negligible so long as the stream velocity is very small compared
with molecular velocities, which will be the case if the terihinal

conditions do not differ widely per unit of distance.

the mean of all values of X and v it is

X = |
f(v)vXdv.

Jo



IX.] OF MOLECULES AS OAERIEES. 119

It therefore does not sensibly affect the results calculated

frona Boltzmann's formula in any case to which as I understand

he proposes to apply that formula. It is worth while however

to consider the sign and order of magnitude of this deviation

from complete accuracy.

We are asked to suppose that in stationary motion molecules

carrying positive Q, have a mean velocity u downwards
;
mole-

cules carrying negative 0 have a mean velocity u and u

being functions of z, Hydrodynamical considerations make Ou
and Qv! sensibly constant throughout the cylinder in stationary

motion.

But when collisions take place in the layer Pi, condition A
is supposed to prevail so that the molecules issuing from

collision are as likely to be moving in any one direction as in

any other, and to carry with them, in whatever direction they

do move, the quantity of Q due to the height z.

In fact molecules with positive (?, having before collision

the mean velocity u downwards, will issue from collision with

some mean velocity downwards, less indeed than u but com-

parable with it, and therefore will not be moving in all directions

’ indifferently, but on the average downwards. And molecules

moving downwards will possess on average a greater quantity

of 0 than that due to the layer in which their last collision

took place. For let co bo the absolute velocity of a molecule

m before collision. Let be the velocity before collision

of the other molecule m concerned, E the angle between

their directions as in the figure (Art. Ill), Then the velocity of

m after collision is the resultant of (1) the common velocity of

m and m\ (2) their relative velocity, in whatever direction it be,

after collision. But for the relative velocity after collision all

directions are equally probable. The relative velocity therefore

contributes on average nothing to the resultant.

The resultant velocity after collision is then on average

the common velocity. And the velocity after collision re-

solved in its direction before collision is the common velo-

city resolved in direction <y, that is if m == m' <» + cos E,

We have then for the mean value of the velocity after
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collision resolved in the direction before collision the ex-

pression

A.
I I

Vw* + •— ioyjr cos JiJ (<u ‘yj/' cos £1) sin EdU.

That can bo calculated as a function of <a. As however wo

intend to treat it as negligible, it is not worth while to calculate

it hero. But we can easily prove that it is nocosaarily positive.

Wo may therefore conclude that the moan velocity after col-

lision of a molecule carrying positive G resolved in its direction

before collision isfa on average, whore/is some positive quantity

less than unity.

It follows that the moan velocity downwards of the mole-

cules caiTying positive G, which before collision was u, is after

collision fu.

Wo have thus proved that the molecules carrying positive

G issue from collision in the layer 1\ with mean velocity fu
down the cylinder. For the same reason the molecules carrying

negative G issue from collision with mean velocity /ao tipwards.

Therefore of the molecules which reach the layer P, having had

their last collision in the layer 1\, the proportion which carry

positive G is not the same as the proportion of all the molecules

within the layer Pj which carry positive G, as it was assumed

to bo in forming the fundamental equation, but is greater.

118. The effect of the introduction of the b ooeffioierde in

this case.

It has been shown in Chapters iv.—vi. that molecules near to

one another are on average moving in the same direction. The
energy of their relative motion is therefore loss than it would

be were condition A assumed, and therefore their encounters

pro temto less frequent. That tends to increase the mean free

path.

On the other hand under assumption B the molecules tend

to become aggregated into denser and rarer masses. That

tends to increase the frequency of their encounters and there-

fore to diminish the mean free path.
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It is probable that for ordinary gases under ordinary con-

ditions the h coefficients will bo very small. And if so the

effect of the b coefficients on the phenomena of diffusion &c.

will be of the same order of magnitude as those sources of error

mentioned in Arts. 116, 117, which as we have said Boltzmann

and others have agreed to neglect in calculations concerning

these phenomena. I shall not therefore here further consider

the effect of the use of assumption B instead of A on such

calculations.



CHAPTEE X.

ON THE HYPOTHESIS THAT HEAT OR TEMPERATURE IS REPRE-

SENTED BY THE KINETIC ENERGY OF MOLECULAR MOTION.

NatansoTis Theorem.

119. M. Ladislas Natanson (Interpretation cin4tique de la

fonction de dissipation

—

Bulletin de VAcadimie des Sciences de

Cracovie, D4cembre 1893) considers a medium composed of

molecules in motion. The components of the molecular velocity

of a molecule are u, v, w, those of the apparent or stream

velocity of an element of volume are f I have here inter-

changed Natanson’s symbols to make them agree as far as

possible with my own, and so avoid confusion. Evidently, taking

mean values,

u= v = w = 0.

Let ^ = dxdydz,

p denoting density, and

E = ^ /// ^ dxdydz.

The integrations are throughout all space occupied by the

system.

120. M. Natanson gives no definition of rj, 5', but is, as I

understand, willing to accept Boltzmann’s definition—that ^ at

P is the momentum in x of the centre of inertia of all the

molecules contained in a sphere of radius r described about P
as centre divided by the volume of that sphere, in the limit

when r becomes infinitely small.

I should propose myself to define it as in Art. 61 by the

function /, so that Natanson’s components of stream
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velocity, agree nearly with the of Chapter v. But
M. Natanson does not on his own assumption require any

further definition.

The normal pressures per unit of surface are

JPxx “ Pyy ~ > Pzz — p'^•

The tangential pressures are

Pxy^pUV, Pxz^pUWy Pyz= pvw.

121. He then gives the following fundamental equation,

viz. q being any function of u + v tj, w + the time varia-

tion of q is found from

Here X, F, Z are the components of external force, and ^
dq

the change of j due to encounters, ^ the total change of q

with the time.

Writing u + ^ for q^ he finds

P§ + + Iz ^P^^ = P^’

And again, putting q = {u + + rjy + (w; + f he obtains,

neglecting terms of the third order,

p^ (P + + w^)

^
+ (2^pu^ -h 2'qpllV + 2^puw)

+^ (2^puv + 27]pv^ + 2^pviu)

+ ^(2^puw 4- 2rjpvw -f 2^pw^)

= 2p{^X + 7]Y+^Z)
o

- + /O + w”) .
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Combining (4) and (5) wo got

!<>i ^ ^ + f”’

2

+'’™(2+D+'’“’”($+2)+''~(|+s)

P
3^
(f + »?- + ?“ + M’ + + vP) .(6 ).

Let
cte
= a,

_’? 4- ^ — Ji ^ ^ i-s (7
dz dy ’ dx ^ da ’ dy ^ dm

Add to tho first mombor of (6)

i (y? + «;“ + 'Up) (‘ui‘ + «“ + vP) (a + b + c),

which is zero. Also write

ip («’ + v' + w’)

And then in the c(iuation so obtained integrate for sr, y, z,

and make + 4-nf=0 at tho bounding surface, I, m, n

being direction cosines of the normal to that surface. Assume

further that A = F = ^ = 0, or no external forces act.

The result is

^ III
pvwA -f pimB 4- puvG) dwdydz « 0.

Treating equation (6) in the same way, wo obtain

pvwA + puwB 4- puvO) dxdydz = 0 .

And therefore, there being no external forces, s= —~
,

or the kinetic energy of stream motion can increase or diminish

only at the expense of molecular energy.
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Let us now write

3̂ = + pv^ + pw\

F= (j> — pv?) a + {p — pi^) b + (p — pw^) c

— pvwA — puwB — puvO.

By a further use of the fundamental equation, putting

q= {u + ^y, and then q = v~+ rjx w + ^, we find

+ (P- P'>’y + (P-

+ 2 (pvwy 4- 2 (puwy + 2 (puvy).

And finally

where

dt
’

dK
dt = jj

l(F—pO) dwdydz,

d = a + 6 + c -f~ 4-
ax dy dz

123, It appears then that,®', the molecnlar or heat energy,

gains or loses at the expense of the energy of stream motion,

according to the law of encounters ‘'loi des chocs mol(5culaires.’'

If, that is, as the result of encounters the tangential prossurcs

are increasing, E diminishes, and K increases. Now this is

precisely what happens according to Chap. y. ante, when,

for instance, instead of being material points, the molecules

become elastic spheres of finite diameter. As the result of

collisions in that case ^ in my notation becomes P+ P, &c.

And as we have seen, Art. 105, (a7)^(a/3)^ and 0yy increase,

but only up to a certain point, at which namely the ratio p/f®
has the proper value for stationary motion. The relation

between the energy of visible motion K and that of molecular

motion E is in Natanson^s theorem the same as that between

K and heat in Thermodynamics.

Messrs Bryan and Boltzmann's method.

124. In order to confirm the hypothesis that the temperature

of a gas or other substance is proportional to the mean kinetic

4
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energy of its molecules, Messrs Bryan and Boltzmann {Vienna

Sitmngsberichte math, naturw. Classe, Band III., Abtheil II.

Dec. 1894, also referred to by Boltzmann, Oastheoriej p. 136, et

seq.) treat the following case. X and F are two infinite parallel

planes. In the space Sj to the left of X is a gas A. In the

space 82 to the right of Y another gas B. In the space 8
between X and Y there acts on molecules of gas A a force

directed from F whose potential becomes infinite on F, and

there acts on molecules of gas B a force directed from X whose

potential becomes infinite on X. These conditions insure that

no molecule of gas A will be found in 82 ,
and no molecule of gas

B will be found in Si. But in the space 8 there will be a

mixture of A and jB, and encounters will take place between

their respective molecules.

Messrs Bryan and Boltzmann use generalised coordinates,

but it will be sufficient in this notice to deal only with velocities

of translation, as though both A and B molecules were elastic

spheres.

It is assumed that the mean kinetic energy of A molecules

at any point within 8 is the same as their mean kinetic energy

within Sly and that the mean kinetic energy of B molecules

within 8 is the same as their mean kinetic energy within /Sg.

It is assumed further that as the result of encounters taking

place within Sy between A and B, the molecules ofA acquire, if

they have it not already, the same mean kinetic energy as those

of B. That result seems to me to be questionable or to be only

approximately true, if the molecules have finite diameters or

spheres of action. But I state this with diffidence when such

authorities are against me.

Making however these two assumptions, the conclusion

follows that the mean kinetic energy for the A molecules in /Sj

must become equal to that of the B molecules in 82 - And
therefore that if the mean kinetic energy be originally different

for A and for j5, a finite quantity of energy will pass from 81 to

82 ,
ov vice versa.

The condition that no energy shall pass is that the mean
kinetic energy shall be the same for A as for B. But we may
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regard the two gases as two bodies in contact, which condition

is more nearly realised as S is diminished indefinitely. The
known experimental condition that no energy shall pass between

two bodies in contact is that both shall be at the same tempera-

ture. Hence in the case of the two gases at all events kinetic

energy plays the same part as temperature.

Professor J, J. Thomson's method,

126. The same hypothesis is tested in a different way by
Professor J. J. Thomson {Application of Dynamics to Physics and
Chemistry, p. 91). He puts the following case. Suppose a tube in

which is moveable a piston of very great mass M, On one side

of it is a set A of material particles each of mass mi in motion.

On the other side a set B of material particles each of mass in

motion. Considering the two systems of particles as two sub-

stances, and the piston as a conductor of heat, the condition

that no heat shall pass through the piston from one substance

to the other is that the two substances shall be at the same

temperature. If temperature be represented by kinetic energy

of translation, then the condition that neither set of particles

shall on average either lose or gain energy by collisions with

the piston ought to be that the mean kinetic energy of transla-

tion is the same for the A as for the B set.

Let U be the velocity of the piston, % the velocity

normal to the surface of the piston of a particle before

impact. It is assumed that particles striking the piston re-

bound from it as perfectly elastic bodies. Let U', vf denote

the values which U, % assume after impact. Then we have

niiUi -f-MU= -4- MU\

miU^ -f- = m^Ux^ -1- MU'\

From which deduce

/ U^ ~ 4iMmi (M - Uvi - / n
mi (Ml - Ml )

pf+ mi)>

“

Now add together the equations of this form for all collisions
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which take place in unit of time. Let Ni be the number of

such collisions. Also let 6 = \MU^ be the kinetic energy of the

piston, and the mean kinetic energy of the particles of the

set A which strike the piston. As I understand Professor

Thomson, the mean is taken for all collisions, not for all

particles.

It is assumed that the velocity JJ of the piston is zero

on average of time, because the piston is being struck on the

other side by particles of the B set and the pressure is supposed

to be the same on either side. Hence we may neglect in the

expression (a) the term which contains TJ in the first degree.

The expression then takes the form

2Mmi
(M + mi)2

(1).

Note. This should, I think, be instead of because as

so denoting the whole mean kinetic energy of all molecules

which collide with the piston or with other portions of the elastic surface

bounding the A molecules, i.e,

26^— 4- Wj^),

But this does not affect Professor Thomson’s argument.

Similarly for the B set we have

(2),

and since 36 = — Niddi — == 0 on average

If
iVnmj2^2 7 _ iViTTli

I \2 » ^ / nr , No •(M+ (M + TThf

This gives 20- J (0, - 0,),

20-i^.=—-ji(0.-02).
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Substituting in (1) and (2)

dd, = (6.
S(a + b)^

2Mah
de.=

3 {cb Hh

2
“

^l)>

and therefore dO^ = dd^= 0, if = ^2 -

It follows that if 9^ > 6^ the effect of all the collisions is

to increase 0^ at the expense of $2 ,
and mc^ versa. And the

condition that no energy shall pass from A to B or from jB to A
is that $2 = 01 ,

or the mean kinetic energy of translation for all

particles colliding with the piston is the same for A as for B.

126. Now let f(u) du be the number per unit of volume of

particles of the A set whose velocities normal to the piston lie

between u and u-{-du. Then the number of such particles

which strike the piston per unit of area and time is
|

f(u) udu.
J 0

The sum of the kinetic energies of their motion normal to the

piston is Jm] I f(u)u^du. The mean kinetic energy of motion

normal to the piston for all A particles irrespective of their

striking the piston is I f(u) u^du. Let f(u) be so chosen
Jo

that the ratio

^00 roo

I /(^) I
/('^)

.Jo ,Jo
pOO • ^00 >

I f{u)udu I f{u)du
Jo Jo

is an absolute constant, and therefore the same for A as for J5.

That being the case, when 0i = 02, or the mean kinetic energy

per collision is the same for A as for B, the mean kinetic energy

per particle is also the same for A as for B. And therefore the

condition that on the whole there shall be no transfer of energy

through the piston from A to 5 or vice versa is that the mean

kinetic energy per particle is the same for A as for B.

B. 9

I

I

I

t

I

I

i
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If we assume for A particles

/(Ui) =

and for B particles /(^a) =

we satisfy the condition.

Possibly there may be other forms of f{v) which satisfy it.

But however this may be, some assumption with regard to the

relative frequency of different values ofu appears to be necessary.

Further, /(t^) being properly chosen, we satisfy at the same
time the two conditions (1) that the pressure shall be the same
on either side of the piston, the number of particles per unit of

volume being the same for A as for jB, and (2) that there shall

be no transfer of energy.

The law of distribution of velocities thus appears to be

of the essence of the matter, if the molecular motion is to

represent heat.

The Second Law of Thermodynamics,

128. Our gas system being in stationary motion according

to the laws above investigated, we might impart to it a certain

quantity of heat hE, That being done, it would assume a new
form of stationary motion, in which the mean kinetic energy T,

the volume (o, and the mean potential energy will be gener-

ally different from what they were in the original motion. If

P be the external pressure which in the original motion was
just sufficient to prevent expansion, the change of volume 0ew

can be effected only by doing an amount of work Pdco against

the external force P. A part of the energy dE supplied to the
system is spent in doing this work. The remainder is spent in

increasing either (1) the mean kinetic energy T, or (2) the

mean potential energy, of the intermolecular forces, so that

dE= hdT + 3%-fP3a), \ being the number of molecules.

129. If the external forces P also have a potential, there is

in general a determinate relation between 0a) and 0P, and a
determinate relation between dco and dx- So that in this case
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there is only one independent variable, and no question can

"dE
arise whether or not ^ is a complete differential. Any theorem

proved on the hypothesis of P having a potential is not the

Second law of Thermodynamics as -usually understood.

But the external force P is in Professor Thomson’s language

a “controllable” force. It is possible therefore by suitably

varying P to maintain the system in stationary motion with

any arbitrarily assigned values of T and But dT and

06) being given, 0% is determinate. There are then, P being

• controllable, two independent variables. It is convenient to

use P and (o for independent variables.

130. If in rectangular coordinates the abscissa represents

6), and the ordinate represents P, any point in the diagram

represents a determinate state of the system, in which it is in

stationary motion with the values of P and g) corresponding to

the point, it being understood that the controllable force P is to

have such value given to it as will be necessary to maintain

that motion stationary. So also any curve drawn on the plane

of the diagram represents a series of states through which the

system might be made to pass successively, P being made to

vary as required. But it is understood that the change of

state, that is the passage from one point in the curve to

another, is effected so slowly that stationary motion is always

attained, and therefore the kinetic energy corresponding to the

controllable coordinate 6) is for our purpose to be taken as zero.

If the curve be a closed curve, the system having passed

through all the states denoted by the curve, has at the end

of the process the same values of P and g), and is therefore

for all experimental purposes in the same condition as it was

at the beginning. Contemplating the system itself alone,

nothing that we can observe by experiment has happened to it.

Now if 0 denote the absolute temperature, the second law of

f dE
Thermodynamics asserts that in this complete cycle

J
— = 0,

0P
or is a complete differential of some function of 0 and g>.

9—2
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That fanction was called by some writers the Thermodynamic

function, by others the Entropy of the system.

dE
131. As I have said, being a complete differential, no

change takes place in the system itself as the result of any

complete cycle of operations of the kind described. But JdE=^0,

and JPdco^O. Generally a quantity of heat denoted by JdE,

drawn from some exterual source, has been converted into

mechanical work outside of the system, and a further

quantity has been transferred from a hotter to a colder external

body, as shown in treatises on Thermodynamics. But if our

system be enclosed in a non-conducting envelope, so that no

heat or other form of energy is allowed to pass into it from

without, or out of it into external space, it may by suitably

varying the controllableP be made to expand or be compressed,

and in so doing it does external work, positive in case of

expansion, negative in case of compression. This work is done

at the expense either of the absolute temperature 0 or of the

potential % of the system itself. The line traced on the

diagram in such a process, a line that is for which dE= 0, is

called an adiabatic line. If the cycle be ABCD on the diagram,

AB denoting expansion at constant absolute temperature 6,
BG

adiabatic, CD compression at constant absolute temperature 9',

and DA adiabatic, it is found that the heat which must be

supplied from without to effect the expansion AB is to the

heat withdrawn during the compression CD, both measured in

mechanical units, as 9 : 9\ If temperature is represented by

dE
the kinetic energy, we ought to find T : T :: 9 : 9', or

^
is

a complete differential.

132. In the Philosophical Magazine, January, 1876, a

proof of this proposition was given by the present writer.

This was employed afterwards in an improved form by
Dr Watson in his Kinetic Theory of Oases, and has been

accepted by Professor Bryan. It was founded, as will be seen,
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on Boltzmann’s theorem, that the chance of a group of X

molecules having their coordinates between the limits

... + dxj,

... +

(in which position their potential is x) is proportional to

€'~^^ dooidyi ... dzK.

This is established only on the assumption of condition A.

I will here give that proof of the second law in order that we

may subsequently see what modifications are required in it

when we abandon condition A, and employ the more general

method of this work. I here use h instead of 2A of Art. 44.

We have dE = XdT +9% + Pdco,

3
Let T=^^= the mean kinetic energy of a molecule.

Then
1

T'^ 3
’

dE ^
2h p.= \ -^dT+-^ 9X +^and -^ == X ^ 9r+ 9% -4- Pdco (I).

Now substitute for Pd<o from Clausius’ equation, Art. 24,

|P(i) = jKr

,

Now if there be a general cubical expansion, w becoming

(o + dm, every line r in the system becomes

or ar-=i
d(o— r.
O)

Therefore the last equation becomes

P0CO = {u^ + + 'ZXPdr,
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Again, for (yicli configuinfcioii

'S^Bdv » — M f)M.

[chap.

Hoihh) taking innau valunn

XX/i!)r- ';xa„.
dm

Here in the leeaii for all eonfigiuiifciotiH of
, that m

the liieaii of a variation, while dx w the variation of a mean.

Thes dintinetion between dx dm in of the eanence of the

matter.

Again,

(a® 4' 4" « i ,m h m

if X bo tlie niimbor of inoleciilea of the Bynttan.

We have them

n m am

and

And therefore

BN
T

3 ‘
ft) 3 (iw

i-x.^ + - (H).

133. So far onr (3qiiation ia dtirived from phyaiml con-

Hideratioiis.

Now conyider the auxiliary function

u>
"«///::

Then du--

e~*x dw,...dz>,.

du

—M dh:

Ilf

—x^K

dJJJe-'^xy^dwi ...dzKand
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because, since the chance of the configuration Wi ,..Zk is

evidently

X

Again,

the last term l)eing necessary because every element of length

0Ci)

... is increased in the ratio + by the general

cubical expansion above mentioned.

That is
du r.

da) =s
dot)

— h 06) 4* 9fit),

(ICO fit)

because d{(h\

.

. . dZf^) « X *
,

fit)

and du » —

or
fit)

= + (HI).

Substitute this in (11), and wo have

^^'= X01(,g2' + 33(/.x) + S9«,

which is a complete differential.

134 . Let us now consider what modification has to bo made

in the above proof when Q, instead of being the sum of squares

of the velocities, has the value given to it in this treatise.

With the form of Q containing the b coefficients, the

relative frequency of the several configurations is different

from what it was when Q was a sum of squares only, but the
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5H of % and arc not altorod for any givon configuration.

Hence % and have different viUuch from thoHo which they

<k

case, Also T

had in the former case, % and arc^ the same a-s in the former

:) £

NoverthelcBs the physical etpiation

(i)

nanains unchanged in form with tht^ altered value of

Further when we substitute Clausius^ expression (Art. 24) for

Pdoi>j the ociuation

=X31og2’+-3-3x+F „ -
jj

(11)

remains UTichanged in form with the altered values of h, %,

and 5.
do)

Now lot us consider the auxiliary function //. We might

in the proof above given have put it in the form

X

„ = log
III

e-A uW'tfiHVi) ...<iyK.

In our proaont probloin it would then take the form

u = log
jjI

dwi . . . dZ},dti . . . dy\

A

= logjj '^J)e~''^dHda-,

where da atands for dwi...dzK and d<r for dat-.-dy^. Then
k' and a> arc the two independent variables. Lot

(h\^

Then

i

'i



X.J
TU IfiUMOI)YNAMIOAL ilKJLAWON 8.

N0w dfif

'I! e-'^xFdsdo-

If

IJe->^'>‘(Fx-§)dsdcr

e-i^'xFdsda-

4-
Jj

dsdcr (!)•

Fdmla-

Again jIz<o

J
j" e"A'x Fdadff

+ ff

Jj
^-'‘'^Fdsdcr-'-'

e~'<‘'x F ^^^{dHd<r),

tho laHt torm roforring to tho variatiotiH of all tlio olomonts of

length da, dy, dz, consociucmt on tho expansion donotod by d<o.

That is da
da

JJe-'^'xFdsdcr-’-'
^

dco
+ x

a

dct)

,X'- da)
m do)

Fdnda
Jj

dsdcr .(2).
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Adding l/ogcithor (!) nnd (2) wo find

U = - X ?)// - /t' d(c + A
w

I

jj
FiMa-

Jf""'

, df'

,)
(hdcr.

But now
J
IFdcr « in uuuHtunt wliatov(vr ho the values

of h and o) or F and 0 , It in tlujrefore not affected by the

variations of F and 0 ,

Thc3H(5 variatiotiH affect luuther the (luantitioH cki... 7a, nor

the liinits of the dcr integration.

Wo hav(j then

^f = ?u)logr+|?)(4'x) + I3«,

a result of prociHoly the sanio form as in the former mise.

136. In any case in wliich

^X-'du.'

the proof of the second law for the two indeptmdent variables I’'

atid 0 cjan bo presented in a simple form.

For wo have in that case from II

dliJ
f,. d0^ Xci log 1 -p |X

m

Now let ^ which a piu’ticle

moving with the velocity of moan square would doscribo a

distance proportional to the linear dimonsions of the system.

Then |8 log o) = 28 log i + 8 log 1\

and therefore

dE ^ d0
- = X8 log / + fX ~

= 2X8 log (iT).

k
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We tnighi dofiiK^X2tT aa the Action of the system par excel-

lence. With that definition the Action is the same for all

states of the system defined by dK« 0, that is for all states of

the system on the same adiabatic lino. And wo may say that

sa either is, or is propoi*-

tional to, the Action.

dE
the thermodynamic function

136. But dx ^ cannot exist for any systetn such as

we hav(5 treatcKl as a gas, excu^pt for a so-called perfiKvt gas in

which % = 0. If tluu’ts b(j a potential % at all, the relative

fre(|uency of dilferent configurations of the molcculoB must

generally vaiy when T varies. And therefore although for any

configuration the (diange of % as varies is independent of 1\

yet the mean of all values of x be independent of

1\ because the variation of T clauses some configuratioris, i.e.

some values, to be represented with greater, and others with

loss freipiency. We may for instance conceive a case in which

the molecules placunl at etiual distances from each other would

exert no setisible forces on each other by reason of their

distances, and so » 0. If wo sot them in motion they will

in some cascis approach so near to each other that % +

137. Professor J. J. 'Thomson in the work above referred

to gives a proof, not, as he says, of the second law of Thermo-

dynamics, but of a proposition analogous thereto. Ho does not

confine himself to the two variables 2^ and o), but employs T
with atiy number of controllable coordinates <p. Then he

assumes that the mean potential energy %, or in his notation

F, is completely fixed by the confcrollablo coordinates, that is,

is not a function of T, That restriction prevents Professor

Thomson's proof from being applicable to gases, as a proof that

is a function of temperature and volume, except in the

limiting case of a perfect gas in which V is non-existent. Nor
does Professor Thomson propose to apply it to such cases.

It may well b© that in the more general class of problems
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treated of in his work the condition that V shall he a function

of the controllable coordinates is not a serious restriction.

138. The following is another form of solution of this

problem. Let there be, instead of the one controllable coordi-

nate CO, any number of them as eoi ... ct>^. We will now use co

as a type controllable coordinate. It is assumed that the rate

of change of any co with the time is so slow that we may leave

the velocities ©i . . . out of account. Let Fi . . . the

generalised components of momentum corresponding to ©i . . . con-

Then it is a characteristic of the stationary motion that every

dV
is zero. And therefore if pi-..pn he the components of

external force required to maintain the motion stationary

p =^—^ for each co,
. day doo

by Lagrange’s equations. See Art. 24.

Generally let F be the function denoting frequency, that is

jP is a function of the coordinates z^, and the velocities

ai...7n, of the molecules of the system such that the time

during which on average of any very long time, they lie between

the limits

iTi . . . + dxi

,

... ai + cZtti,

7n.-.7n + d7n,

is Fdx^ ... dzndoL^ ... dym or as we may write for brevity Fdsda.

Then the mean value of any function as % is

X'^JJ I JJ
Fdsdar,

And dx = jj
(x^F-h dsda

jjj
Fdsda,
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In tho same (iaso wo havo, if t ropniacait the kinetic energy

in any partieiilar state, T the mean valut) of t,

7’- JjrFdHdcr,

Tc)FdHdar+
jj

Fdrdsdcr

ea JjTdFdadcr + JJ
F dcidsdc

.

139. Ijet US' at this point asanmo tho function F to bo a

product of two functions, F’^jf, whore/ is a function of tho

coordinates only. In tliat case wo have also

X = / I

f^x “
f +//£

?)X
"

And now

9A' = 07' + 0x+P^«

:ar+3x-£3« + t'>“

becaune

therefore

dii

ss 2dT +

1

%3/<:fo — jJ
rdFiUdcTy

0 «() as

JJ
F dciodsdcr

» 07^ JI

TdFdiBdo'f

•e

~ = 20 log T + 2 J^,
d/ds — JJ

— dFdsder.

And now we make complete differential by asBuming

where
<f>
and yfr are any functional symbols.
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A Bolution of these eejuatiotis is

where 0^
0' are the known constants.

This Bolution is the one we should take under thc^ assumption

of eondition A. Another solution is

/« F « (,V‘ ®

if Q =a /mT, This is the solution corresponding to Chap. VIII.

The subject of the Sc^cond Ijiiw of Therniodynamics has

been very fully investigated by Professor (I H. Bryan in his

Keport on the present state of our knowledge of ThcTtno-

(lynamicH, l^trt IL, British Association, 1H!)4



APrENDlX.

Ma™ KM ATICAL PEGPOH IT IONS.

In tlio preceding chapter I have iiHHiunod withoxit proof

certain propoHitioim n^Iating ehiofly to detenninantB. They are

for the nioHfc part very Birnpk^, hut an Home readerB may think

they rcKiuiro proof, I will dcwoti^ this chaptc^r to proving them.

I nhall retiuin^ to mak(^ uho of tlus following elementary

property of detcu’minantH. If (^aeh of tlu^ constituemtH in one

row in (^cpial to the (‘.orn^Hponding countifiumt in a necond row

rnultiplii‘d by a eouHtiUit factor, tlu^ (Uik^nninant in mn). The

two rowH for which tluH in tht^ cane ar(^ naid to be mmilar.

Whatever gcuuu'al pro|Hmition in proved of rowH in of courBc

equally tnu^ of eolurnuH.

(a) L('t UH takes for a typ(s dcsterminant (sf couHtituentH

/i » f/jj,

/Y /i (i
^

''yi »
' '

''.mi

in which in the couHtituesnt (whatever itn value) in the j/th

row and r/th column, and in not neccBHarily equal to 0^, &o.

Thin can bo niadts to rcspreHtsnt any givesn determinant by

aHHigning proper valuoH to the couHtituentB 0.

Let JJpg denote the minor of D formed by omitting the jptli

row and r/th column, that ie by atriking out Opg and the row

and colunm in which it in; J)gp the minor formed by omitting

(Ijp. In tins determinant or any of iks rninorB the diagonal
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from the first constitumit in the top row to the last in the

bottom row shall be called the cuds, and its constituents axial

conBtitmnU,

(b) The sign of shall be such that

I) = OiiDii -j- 4* ... 4- OinlXn

2=3 &C.

In order that this may be the C4U«e, wt^ must in forming

any minor Dpq apply the following rule of signs, namely to the

product of all the axial constituents of that minor the positive

or negative sign is to bo attribiited according as p 4- q is even

or odd, and wo deduce therefrom the sign of th('. product of any

other set of constituents of the minor according to the usual

rule in expanding determinants. In like manner l)prq» nhall

donotcj the minor formed by omitting and and the rows

and columns in which tlu^y an^ It follows from thci above

convention concerning signs tliat

p nq n

nl)^ X i: (fp, J)pr
V 1 q I

(ID
Then evidently ^ Dp,j, whaU^vtu* values p and q may

have.

(o) Now coiisider the now determinant

i>'= Gil ““ Cia • - BiXn,

0^1 — $1^1 , (7^9 — ,

Gni ““ 6fiXi , OfVi -...

If all the (7s in any two rows, as the pth and qth, were ^ero,

D' would be zero, because the pth and gth rows would then bo

similar. It follows that every term in J) contains at least

n-1 C factors, and therefore that iX contains no products of

any two or more of the new partial constituents 6x. For such

products necessarily enter in pairs equal and of opposite sign,

as for instance

Therefore
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(</) Now form a tuiw dotortninaiit, of
(74+ 1)“ constituents

by adding to 1) an (n + l)th row and (n + l)th column. The
(n + l.)th row hIuiII bo

and the {n+ l)th column shall bcs Hyrnmotrical with it, contain-

ing in the first row, /9,jte+„ in the second, and so on.

Also lot = for all viiluos of p and y.

Lot A bo that now dotornunant, nanusly
/1 /i /i o
'Hi •• •

' Piln4-i)i

A = (>.^i , j

(e) Noxt in /)' writa

2a,,H ’ 2a,mil

^V-4-
M 1) A/ (n*hi)

2a,r
'

' 71 ^ 1
2a;,

,

k’O..

Them wn hfiv<^

// D ^ ^ /)
2a,

f

,

pip

and by tin* ordinary c*x)>anHion

A 2a, {,/)**• (, j ,, ,1 l)pfi.

// * A.
^a.,

I

,

(/) In tluH lant dodnrtinn vvn havt? attributed nn particular

valueH to the f/ cniiHtitinuitH.

It would theridbre hold fur all tln^ ininorH of I)' not contain-

ing tin* Hulfix n 4 1 an well a« for // itsi*lf, nnrrn*ly

1 4

Ml^ /
A,,,

isa, II

I

and tln»rcdbr<^

Asi Ai.j
-6a,

f I

f)n' An
17 ” A ^

IK' Am
jy A ,

&c.

10
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(g) Now conBider the function in which h is any con-

stant, and Q is a (|uadt*atie function of variabloa tt,, u .^ ... v-n,

namely

Q = -f- 4“ &C.

Let us effect the integration

/
e'^^^diin betwe(‘n Hmita i oo ,

The terms in Q which (tontain tin are

which may bo put in the form

(

Let ns for a moment writer

4 l>m^h d" &<*

2 Vf/,,

'I’hen

/"
,

+ &C.Y'* + &C.)“

2 Vi i" -to,.

'

= z.

and

f 6
./ "'SO

I r
'"'

r/,

= 6 nndtiplitMl by a iiuuuTical factor.

Comparing these rcisults with (c), (/) we h(m‘. that if

2aj, 6ia,

h
,
2Ry

, 62a • • • »

D containing (n+ 1)^ constituents,

and D' = 2a, •
/. 1

2an ^2a„’
'>12
-

2ci>n

2a.j
2(tn “2ay/

*

D' containing nf constituents

;
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thou
I>n A, A/_A,
D'^j)' iy~T)-

That iH, tlioH(5 ratios aro uot alterod by the change in the

coofheients a,, 6^, &o., coimocjueiit on the integration accord-

ing to •(«„. Evidently the same law holds for every subsequent

integration. Lot us then [lerforin the intogmtions

III

an<l let th<» result b<(

e f/»a . . , <ill„ ws ^

If 4 ^ proportional to the chance

that two variubU^H and nhall between the liinitB

Ui,,,i({ + dni for tlu^ one, and v/y ... for the other, we

eanily find the immi of u{\ thuH

the liinitH of inic^gration being for each n ± oo

I Suly ^ (l[]

if d be the deternunant

2il|, /^ly,

j

/f|y, 2/ly,l

. dll Ihi
Itat

,,
>.

!,
by the last article.

Thondbro
“a Ai

‘ h i)
•

Biinilarly
1)»

«. -

and io on.

10—2
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(h) Under the same circumstances to find the mean value

of^ ,
or + ftia'Wa + + &c., % being given (see Art. 97).

CLUi

That is to effect the integration

jj
j

.

.,du2 . . . dun€~^^ (2ajUj + b12^2 + &C.).

Let 2aiUj -f ii2^2 + = P.

The coefficient of in P is twice the coefficient ofwi^ in Q,

The coefficient of every other u, as in P is equal to the

coefficient of in Q.

After integrating according to Un the coefficient of Ui in P

is 2ai -- ~ while that of in Q is ai —^ .

2(Iyi

h h
The coefficient of in P is 612 — and the coefficient

of W1U2
in Q is the same.

The same relation between the coefficients in P and those

in Q which existed before integration according to Un exists

also after that integration. The same rule holds for every

subsequent integration to Uq inclusive. But when all the

integrations have been effected to Uq inclusive, Q has become

Therefore P has become ^ Ui which is the mean
ZJii

value sought.

(i) Let us now consider the determinant

P = S^, -f,S, -/A ^/A...

-/Aa+M AA, AA,-
-AS, AA. a+A% AA,-
-fsS, AA, A/s, (i+A^),...

treated of in Chapter v, Art. 63. Here S is written for 2/*

of that Article.



MATH UMATUiAti I’UOl’OHITIONH. 149

**' ‘'yP« dotomiiuant, wo liiid

0» = l+/A (4-l+//,&c.,

C'jy KB 6a, =a —

y

Sco., 6'aj =! (7j,j =i/lya, &C.

.Lot,, ill bo rociuiml to fhul the vuIuoh of I) atul itw Hrat

j^irtora-

c^-) w*' obHiii’vo that in /Juvoryrow oxtiopt tho top row coa-

tia,i»s out* ooiiHtituont of tlu! form 1 +/“, <J.y. tho (p-f l)th row

oorrtiaiiJ-H I If it wuro // iuHtoiul of I +//, tlic (pH- l)th

r-ovv would bo Hiaulur to tho top row niid tlioroforu D would bo

iseJTO-

X±* wu Ktriko out utiy cohuuu otlutr than tho lirHt, «iy tho fyili

colu-i»»»» wo (lt!privo tho </th row of ita couHtitiiout I

Hgoco bho (;th row Im now Himiltir to tho top row.

if, to form a minor, wo wtriko out uuy other row, aoitlior

tiro firwt tior tho f/th, tho dotorininaut, is. tho minor ho formed,

is zero. Wo hoo thou that if p > I, and y > 1, and p4v. Ak/= <^-

jBu.t if wo oxpaml 1), tho ooiiHtituont 6|„, appoaiw only iu tho

for-ixT and »<(). Thoroforo D whoa oxpandod does

nofc ooirtaia any uuaxial cuuHtitucut except thoHo iu tho fimt

row oi' fii'Ht column.

ITroui fi) ami (j) wo hoo that Kor tlio Hamo roaHua= and HO on for ov(try coaxial minor except /J,,, but aw wo
sliall sets later />i, (.

(A:.-) Wo have noxt t<i find l)^^, />,„ &o, Striking out fromD tlacs i.op row and HticomI column to f<»rm wo find that in

-Oi2 evei’y row oxcopt the top row him one oouHtituont of tho
form I -4-/'^ 'rhoroforo by tho Hamo roaHoning as in

(j) and Isy

fctie i-xjilti iiH (,(, t,ho HJgn of the product of tho axial cou.HtituentH,

^12 = />ai “= When w(s form i>„, tho product of tho axial

csonstittumtH in by our rulo to bo positive. But in order to

redvxce tins minor to ono in which tho top row does not
<3on-ta,irx a cotmtituoat of the form 1 +/“, wo must interchange

two top rows, and thereby change tho sign, of tho minor.

^^vc3f<jro /.lij|= 4./’aW and ho on. • In forming any minor I),p wo
a-ve ii* p jy yjpj number of chaugos of sign.
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( 1) Next let us deal with Du.

Let A = i)n = l+/i^ fiA /i/s, ...

f\f^> 1 fifzy ...

/i/s, /./a, 1

or On = 1 (?i2 =/i/2, &c.

All products of the form f^fq evidently disappear in

expansion, and therefore all terms involving except in the

first degree disappear, and therefore

n—\

Ai = i+ 2 p
1

= S/^if/.-l.

(m) Again, if we strike out any column except the first, say

the second, we thereby deprive the second row of its constituent

1 4-fi. And therefore if we now strike out the top row we
shall have

/i/s.

/i/».

jifi>

(i+/,^)> f,u.-
AAy (1 +//). ••

= —/1/2 by the rule as to the sign of the axial constituents.

Similarly Ajg = -/1/3.

Also Aii = S/2 ~/i2
,

A22 2/*^
7

{n) In the type determinant let now every G beconie

C + dC, and let all the dC's be small, so that we may neglect

products of them. That being the case

dD^t^dG

= 22
jp=l 3=1

dP
dCpq

dCp^.



Ain\ MATiU^MATHJAL Fll<)l»()HITU)NH. 151

L(it. UH H[)ply UiiK to tliu tloLortuiuant of (i) iu which

f/,, ca
&(!.,

fv^i y 1**^1 1 &C.

II(n-o IIH wo luvvo H(>oti f «(), iinloHH either «= I, or g=»
(ti *

'I’horoforo

()/) - Dnddn +j]m(h, + + &c.

+/VSW4, +/a*m;, + &c.

+ >S^flC7s}5j + 4”

Now an in Art. 8.1 lot uh inaku

0f/^j aa 0, JiS
) ?)(Aa = i^'an*''’, &:c.

Df/gi iw fj6\i

«

yhn^],
&C.,

d(^m *“ /•^otZi >
- if^A, &c.

Tlion m prodnd/H of tho //h am to bo nogloctod, wo have

dl) « + »- &u.

m 0.

(o) L(di UH treat />n, or A, in the Hatnn way. Hero

And f)/^n-^PA,

f/A . r^A 0

'"dd/ "

And ^hnjii — 6g^^j,/y, (fee,,

s®
I (6|.J l>i%J 'A

** KnJ\)>

'’riun’oron', c^acdi atiaxial term/,/a, Ac. appearn twice,

;)A ^ ^

•”
^t/fc/ii \) ’^Jif

t

(^13 ^infi “" Ihnji) A^e.

«3 — bi,^f
I

J

g
— fhn/ifn — ... —

- + Kifi +

+/A./«
+J^A^hnJ'i + . . . '\fxbmfA + A5t;.



152 KINETIC TIIEOttY OF OASKH. [Al'l’KNUIX.

That is 3A — — bi<i^ iji~~

In thin roBult every bpgfpfq in to Ix' c.oiuiicMl once only, that

in, wo do not diHtinguiHh hpg from h^p. If bpg/]/g and hqpfqfp

are counted Kseparatoly, wo munt writer

0A se — I '/>

and thiB form in the one required in Art. 83.

(p) proven that for certain values of 6, ^fp^b^Hi/q ® S//-6

se(^ (33) of Art. 83. Let /(Art. G
1 )
= when r > a.

Taking 0 for origirn let p he any point Op ^p, About p
describe a Ksphere of radius r k‘SH than p, and let q bo a point

on its surface. If n-f 2= 1, or/=: i, the moan value of/^ for

all points q on the 8|)here is
,
or/,. And ecpiation (33) is

accurately satisfied, so long as r < p.

If n 4- 2 > I
,
w(i have in usual iiotation

mi 6(W
A - 2 niu

(pa q- pj ^ 2pr COS P) a

2npr (p^ — r^)”

n . -ir? — 1 1?. — 2 ^ . «

^
npn-ir 4- ^

_ i fi
+ - 2 >-

+ f ] +
*:+ '% te.r

'T^

=/ 4” terms containing/, multiplied by

And if now 6

:

,
where p > 3,

nSO

fp
j

4i7rr^pbfqdr =
j

^irr^pbcir =
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biiiiig Krgligibly, al! thn Umm in ilia inf4^gml vvliittli

follcnv ilin arn nngligibbi ncnnpim^l

{(/) Tu litnl {.Ilf t**nidi{.t«>n Unit tlu^ *iujwlmt4n fittu^tiun (#/)

Q ' f ...

Hindi bf iilwaj'H inmitivn wliatt^vnr vidn(%H \m all.rilmtf<l b»

Hi, %... u,,.

KvidtnitJy hiiich* may liu all iuhhI, bn jHmiiivt^

Himilarly ria, kv,, miwt, bt^ iHmitivf,

A1h<», givmt Q in mininmiu wbmi

iiq

diin
Itifftim 1 ^hnii\ f h^niiyh 1 {l,

And, vvluni minimnm, q numi Im |nmitivy. Snlmtitaitf in q
for Un tbo valiu* I'mind Ibi ih frmn

niin I ^hnih 1 1 0,

that, in
/Wh 4 t ...

'Jilt,,

q thon boiuimoH

q' iiiiti* f tivIiU^^4 b Oy'a./ f &f.,

h ^

whoro
h ^

* f '’Wt t>

f(,
,
iru,

4f/,i 4an

ihfJim
ami ovmy a' iinml. la* |iuHit.iv«% Alnt* ff^,/

Mtn

FrcKUH»din|( in tJn^ Himw way q in ultiiiiabdy roducHHl to

an<l an Uiin muHi bn (loHttivo, // nnini bti |KiHitivn.
i&ti/ii //,j

Himilarly . mimti bo ponitivo, and ho mu Thm’tdbn^ I> and all

•'m

it,H firHtt coaxial niinorM havc^ tln^ namo nign, But if wo only

roduco q tio a ([uadratio. funotion of Ui ami ««

/in Al . 1
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Frolo which imd tho corrcnpoiiding o(|uatit>DH wo hoo that

all the Hocond coaxial iniuoi-H have tho nariu^ nign an tho first

coaxial mmors, and thertdoni tho saiuo sign m D.

Sinularly wo can prove that tho third coaxial ininorH must

have the same sign as the st^cond and ho on, so tliat J) and all

its coaxial niinors must havt^ thci satno sign. And this sign

must be positive because aj, Oa, &c., are coaxial minors. This

is the required condition.

(r) Referring to Chapter V, in which it is proved that with

(r) spheres of finite diameter c,

to prove the same thing for

Consider the space between two infinites plaru^H a* » () and

x^dx, betwetjn which ^ is suppostd constant and m^gativo.

Let u-OL — ^. Then it is proved, as in Art. 64, that tlui number
per xmit of volume of molecule's for wliicdi a — f lies betwetm n,

and 'a + du, when x = 0, exceeds tho eorre^sponding number when
X == dx by the (piantity

dm

Therefore the nuiuber which enter tho space betweam tlie phuies

exceeds the number which leave it per unit of time by

gJJ
dydze'^^'‘^d%2h\m .

Hence as in Art. 66, it follows that, for each element of

volume dxdydzy
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d

dt (.««)—If_ , ax

= — v?d^2h

Now u and a are not independent, as ii and 7 were in

Art. 66. Hence

and

Hence

2/1 - 2h S 3
ua -2;,, a --

2h'4h^'^ 2N2h

2h'v?a? =^

.

2ilh

^ ^ ^ __3
dx dt ~ dx dt 2h \dx)

(1 ),

which corresponds to

K?i) = _ Jl
\dz'^ dx) dt 2h \dz ^ dx) ’

of Art. 66.

It follows, the motion being stationary, that

dt dx 2h \dx)
’

or by the process of Art. 68

When the material points are replaced by spheres of finite

doi^
diameter c, acquires a new term due to collisions, which we

0Ct^
will denote by

,
and we have

d^da^^d^dVJ^
dx dt dx dt ’

Vz, being the components of the half relative

velocity of two colliding spheres.
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Also = 2irc^pV {\^^ - X^) V\

where XF= F^, /^F= F^, 2/F= F„ .

and using the same notation as in Arts. 70—71, we find

dt

X (— X cos 0 + Vl ~ X‘^ sin 0 cos ^') {X^ (4 cos'^ 0 — 4 cos^ 0)

+ ( I — sin- 20 cos^ — 2X Vl — X=^ cos 20 sin 20 cos (j>'}

= 2'
8 dj

. 3 . 5
" ^
X^

whence introducing the factor (7fc“-^^^'*F-^dF where C= (2A)^

and integrating from F= 0 to F = oo
,

we get
3F/ 8 3

1 (if

15

or 9 ^ 9a- ^ ^ 3 1_ /^Y
dir 9^ dx dt 2h\dx)

(3).

We have next to calculate the term

a2
dt dx

'

due to collisions. That gives by the same method as that
employed in Art. 76

TT

— ~ 27rc®pF^
j j ^ ^

X (— XCOS 04- Vi — X^ sin 0 cos (jf)')

X- (— 2X cos^ 0 4- Vl —X^ sin 20 cos ^ = (^)-

Whence we obtain for a pair of colliding spheres

45 rdr
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